大型语言模型驱动的数字交通工程师:框架与案例研究

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE journal of radio frequency identification Pub Date : 2024-08-30 DOI:10.1109/JRFID.2024.3452473
Xingyuan Dai;Yiqing Tang;Yuanyuan Chen;Xiqiao Zhang;Yisheng Lv
{"title":"大型语言模型驱动的数字交通工程师:框架与案例研究","authors":"Xingyuan Dai;Yiqing Tang;Yuanyuan Chen;Xiqiao Zhang;Yisheng Lv","doi":"10.1109/JRFID.2024.3452473","DOIUrl":null,"url":null,"abstract":"This paper presents a novel Digital Traffic Engineers (DTEs) framework, leveraging Large Language Models (LLMs) to intelligently interpret human language and automate the creation of traffic control strategies. This advancement eliminates the need for manual scheme creation, reducing the workload of human traffic engineers (HTEs) and significantly improving the efficiency from requirement to control scheme generation. Experimental results in scenario understanding and traffic control underscore the potential of DTEs to effectively perform tasks traditionally managed by HTEs. This synergy between HTEs and DTEs not only streamlines traffic management processes but also paves the way for more adaptive, responsive, and environmentally friendly urban transportation solutions.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"780-787"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Language Model-Powered Digital Traffic Engineers: The Framework and Case Studies\",\"authors\":\"Xingyuan Dai;Yiqing Tang;Yuanyuan Chen;Xiqiao Zhang;Yisheng Lv\",\"doi\":\"10.1109/JRFID.2024.3452473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel Digital Traffic Engineers (DTEs) framework, leveraging Large Language Models (LLMs) to intelligently interpret human language and automate the creation of traffic control strategies. This advancement eliminates the need for manual scheme creation, reducing the workload of human traffic engineers (HTEs) and significantly improving the efficiency from requirement to control scheme generation. Experimental results in scenario understanding and traffic control underscore the potential of DTEs to effectively perform tasks traditionally managed by HTEs. This synergy between HTEs and DTEs not only streamlines traffic management processes but also paves the way for more adaptive, responsive, and environmentally friendly urban transportation solutions.\",\"PeriodicalId\":73291,\"journal\":{\"name\":\"IEEE journal of radio frequency identification\",\"volume\":\"8 \",\"pages\":\"780-787\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal of radio frequency identification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10660467/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10660467/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新颖的数字交通工程师(DTEs)框架,该框架利用大型语言模型(LLMs)来智能解释人类语言,并自动创建交通控制策略。这一进步消除了人工创建方案的需要,减少了人类交通工程师(HTE)的工作量,并显著提高了从需求到控制方案生成的效率。在场景理解和交通控制方面的实验结果凸显了 DTE 有效执行传统上由 HTE 管理的任务的潜力。人类交通工程师和数字交通工程师之间的协同作用不仅简化了交通管理流程,还为制定更具适应性、响应性和环保型的城市交通解决方案铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large Language Model-Powered Digital Traffic Engineers: The Framework and Case Studies
This paper presents a novel Digital Traffic Engineers (DTEs) framework, leveraging Large Language Models (LLMs) to intelligently interpret human language and automate the creation of traffic control strategies. This advancement eliminates the need for manual scheme creation, reducing the workload of human traffic engineers (HTEs) and significantly improving the efficiency from requirement to control scheme generation. Experimental results in scenario understanding and traffic control underscore the potential of DTEs to effectively perform tasks traditionally managed by HTEs. This synergy between HTEs and DTEs not only streamlines traffic management processes but also paves the way for more adaptive, responsive, and environmentally friendly urban transportation solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
期刊最新文献
News From CRFID Meetings Guest Editorial of the Special Issue on RFID 2023, SpliTech 2023, and IEEE RFID-TA 2023 IoT-Based Integrated Sensing and Logging Solution for Cold Chain Monitoring Applications Robust Low-Cost Drone Detection and Classification Using Convolutional Neural Networks in Low SNR Environments Overview of RFID Applications Utilizing Neural Networks A 920-MHz, 160-μW, 25-dB Gain Negative Resistance Reflection Amplifier for BPSK Modulation RFID Tag
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1