Kristine Joy Camacho, Oksana Tchoul, Yuehong Xu, Abraham Finny, Lavelay Kizekai, Justin McLaughlin, Steven Byrd, Balasubrahmanyam Addepalli, MingCheng Xu, Matthew Lauber
{"title":"桥接乙烯聚氧化乙烯表面改进宽孔尺寸排阻色谱填料","authors":"Kristine Joy Camacho, Oksana Tchoul, Yuehong Xu, Abraham Finny, Lavelay Kizekai, Justin McLaughlin, Steven Byrd, Balasubrahmanyam Addepalli, MingCheng Xu, Matthew Lauber","doi":"10.1002/jssc.202400541","DOIUrl":null,"url":null,"abstract":"<p>Here, we describe the preparation of bridged ethylene polyethylene oxide (BE-PEO) surface-modified silica packing materials for size exclusion chromatography. BE-PEO surface-modified silica was hydrolyzed and subsequent <sup>1</sup>H nuclear magnetic resonance analysis of hydrolysis products confirmed the successful formation of BE-PEO bonded surface. Silica particles exhibiting 3 µm diameters and 1000 Å nominal pore diameters were selected as a base material for this work out of the critical need to improve analytical capabilities for the testing of cell and gene therapy drug products. Accelerated high pH aging study revealed significant enhancement in column stability. Multi-angle light scattering noise measurements showed inordinately lower baseline noise. Moreover, we evaluated the chromatographic performance of BE-PEO silica-packed columns through separations of a protein test mixture, DNA ladder, monoclonal antibody-based therapeutics, and adeno-associated viruses. BE-PEO silica columns demonstrated high resolution, high recovery separations that were confirmed to be reproducible and capable of extended column lifetimes and exhibited low ionic and hydrophobic secondary interactions. In summary, BE-PEO silica particles have yielded a new level of performance, improved base stability, and inherently lower baseline noise. These novel widepore particles will facilitate more sensitive size-based detection and characterization of large biologics in the form of advanced gene therapy products.</p>","PeriodicalId":17098,"journal":{"name":"Journal of separation science","volume":"47 20","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jssc.202400541","citationCount":"0","resultStr":"{\"title\":\"Bridged Ethylene Polyethylene Oxide Surfaces to Improve Packing Materials for Widepore Size Exclusion Chromatography\",\"authors\":\"Kristine Joy Camacho, Oksana Tchoul, Yuehong Xu, Abraham Finny, Lavelay Kizekai, Justin McLaughlin, Steven Byrd, Balasubrahmanyam Addepalli, MingCheng Xu, Matthew Lauber\",\"doi\":\"10.1002/jssc.202400541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Here, we describe the preparation of bridged ethylene polyethylene oxide (BE-PEO) surface-modified silica packing materials for size exclusion chromatography. BE-PEO surface-modified silica was hydrolyzed and subsequent <sup>1</sup>H nuclear magnetic resonance analysis of hydrolysis products confirmed the successful formation of BE-PEO bonded surface. Silica particles exhibiting 3 µm diameters and 1000 Å nominal pore diameters were selected as a base material for this work out of the critical need to improve analytical capabilities for the testing of cell and gene therapy drug products. Accelerated high pH aging study revealed significant enhancement in column stability. Multi-angle light scattering noise measurements showed inordinately lower baseline noise. Moreover, we evaluated the chromatographic performance of BE-PEO silica-packed columns through separations of a protein test mixture, DNA ladder, monoclonal antibody-based therapeutics, and adeno-associated viruses. BE-PEO silica columns demonstrated high resolution, high recovery separations that were confirmed to be reproducible and capable of extended column lifetimes and exhibited low ionic and hydrophobic secondary interactions. In summary, BE-PEO silica particles have yielded a new level of performance, improved base stability, and inherently lower baseline noise. These novel widepore particles will facilitate more sensitive size-based detection and characterization of large biologics in the form of advanced gene therapy products.</p>\",\"PeriodicalId\":17098,\"journal\":{\"name\":\"Journal of separation science\",\"volume\":\"47 20\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jssc.202400541\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of separation science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jssc.202400541\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of separation science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jssc.202400541","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Bridged Ethylene Polyethylene Oxide Surfaces to Improve Packing Materials for Widepore Size Exclusion Chromatography
Here, we describe the preparation of bridged ethylene polyethylene oxide (BE-PEO) surface-modified silica packing materials for size exclusion chromatography. BE-PEO surface-modified silica was hydrolyzed and subsequent 1H nuclear magnetic resonance analysis of hydrolysis products confirmed the successful formation of BE-PEO bonded surface. Silica particles exhibiting 3 µm diameters and 1000 Å nominal pore diameters were selected as a base material for this work out of the critical need to improve analytical capabilities for the testing of cell and gene therapy drug products. Accelerated high pH aging study revealed significant enhancement in column stability. Multi-angle light scattering noise measurements showed inordinately lower baseline noise. Moreover, we evaluated the chromatographic performance of BE-PEO silica-packed columns through separations of a protein test mixture, DNA ladder, monoclonal antibody-based therapeutics, and adeno-associated viruses. BE-PEO silica columns demonstrated high resolution, high recovery separations that were confirmed to be reproducible and capable of extended column lifetimes and exhibited low ionic and hydrophobic secondary interactions. In summary, BE-PEO silica particles have yielded a new level of performance, improved base stability, and inherently lower baseline noise. These novel widepore particles will facilitate more sensitive size-based detection and characterization of large biologics in the form of advanced gene therapy products.
期刊介绍:
The Journal of Separation Science (JSS) is the most comprehensive source in separation science, since it covers all areas of chromatographic and electrophoretic separation methods in theory and practice, both in the analytical and in the preparative mode, solid phase extraction, sample preparation, and related techniques. Manuscripts on methodological or instrumental developments, including detection aspects, in particular mass spectrometry, as well as on innovative applications will also be published. Manuscripts on hyphenation, automation, and miniaturization are particularly welcome. Pre- and post-separation facets of a total analysis may be covered as well as the underlying logic of the development or application of a method.