{"title":"不同干扰强度下湿地土壤-植物生态碳、氮、磷耦合化学计量特性分析","authors":"Yuhan Zou, Xiying Tang, Lijuan Cui, Huazhe Li, Yinru Lei, Xinsheng Zhao, Xiajie Zhai, Jing Li, Jinzhi Wang, Rumiao Wang, Wei Li","doi":"10.1007/s11104-024-07031-9","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Wetlands play an important role in biogeochemical cycle processes and are pivotal in sustaining ecosystem functions and mitigating climate change. This study investigated the intertwined ecological stoichiometry of carbon (C), nitrogen (N), and phosphorus (P) within the soil–plant system of the Hanzhong Crested Ibis National Nature Reserve, Shaanxi, under varying levels of ecological disturbance.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We conducted field investigations and nutrient analyses of both plants and soil during the peak growing season in July and August 2022.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Comprehensive statistical analysis was performed to evaluate variations in soil and plant stoichiometric traits across different disturbance levels within the study area. One-way Analysis of Variance (ANOVA) revealed significant differences in soil and plant stoichiometric traits under varying disturbance intensities (<i>p</i> < 0.05). Regression analysis demonstrated that disturbance intensity is a significant predictor of nutrient variability, particularly affecting soil N and P content. Effect sizes indicated that disturbance has a considerable impact on plant P levels, while Principal Component Analysis (PCA) highlighted distinct clustering of sites based on nutrient stoichiometric ratios, explaining 68% of the variance. The findings underscore the critical role of disturbance intensity in shaping the ecological stoichiometry of wetland ecosystems.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>The findings of this study indicate the significant impacts of disturbance intensity on the stoichiometric traits of soil and plants, particularly highlighted by the elevated C and N levels in PJW under high disturbance conditions. These variations suggest that disturbance regimes could play a critical role in shaping ecological stoichiometry, although further experimental studies are required to delineate the causative mechanisms behind these patterns.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"25 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of coupled wetland soil–plant ecological stoichiometric characteristics of carbon, nitrogen, and phosphorus under different disturbance intensities\",\"authors\":\"Yuhan Zou, Xiying Tang, Lijuan Cui, Huazhe Li, Yinru Lei, Xinsheng Zhao, Xiajie Zhai, Jing Li, Jinzhi Wang, Rumiao Wang, Wei Li\",\"doi\":\"10.1007/s11104-024-07031-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Background and aims</h3><p>Wetlands play an important role in biogeochemical cycle processes and are pivotal in sustaining ecosystem functions and mitigating climate change. This study investigated the intertwined ecological stoichiometry of carbon (C), nitrogen (N), and phosphorus (P) within the soil–plant system of the Hanzhong Crested Ibis National Nature Reserve, Shaanxi, under varying levels of ecological disturbance.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>We conducted field investigations and nutrient analyses of both plants and soil during the peak growing season in July and August 2022.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>Comprehensive statistical analysis was performed to evaluate variations in soil and plant stoichiometric traits across different disturbance levels within the study area. One-way Analysis of Variance (ANOVA) revealed significant differences in soil and plant stoichiometric traits under varying disturbance intensities (<i>p</i> < 0.05). Regression analysis demonstrated that disturbance intensity is a significant predictor of nutrient variability, particularly affecting soil N and P content. Effect sizes indicated that disturbance has a considerable impact on plant P levels, while Principal Component Analysis (PCA) highlighted distinct clustering of sites based on nutrient stoichiometric ratios, explaining 68% of the variance. The findings underscore the critical role of disturbance intensity in shaping the ecological stoichiometry of wetland ecosystems.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>The findings of this study indicate the significant impacts of disturbance intensity on the stoichiometric traits of soil and plants, particularly highlighted by the elevated C and N levels in PJW under high disturbance conditions. These variations suggest that disturbance regimes could play a critical role in shaping ecological stoichiometry, although further experimental studies are required to delineate the causative mechanisms behind these patterns.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":20223,\"journal\":{\"name\":\"Plant and Soil\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant and Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11104-024-07031-9\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07031-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Analysis of coupled wetland soil–plant ecological stoichiometric characteristics of carbon, nitrogen, and phosphorus under different disturbance intensities
Background and aims
Wetlands play an important role in biogeochemical cycle processes and are pivotal in sustaining ecosystem functions and mitigating climate change. This study investigated the intertwined ecological stoichiometry of carbon (C), nitrogen (N), and phosphorus (P) within the soil–plant system of the Hanzhong Crested Ibis National Nature Reserve, Shaanxi, under varying levels of ecological disturbance.
Methods
We conducted field investigations and nutrient analyses of both plants and soil during the peak growing season in July and August 2022.
Results
Comprehensive statistical analysis was performed to evaluate variations in soil and plant stoichiometric traits across different disturbance levels within the study area. One-way Analysis of Variance (ANOVA) revealed significant differences in soil and plant stoichiometric traits under varying disturbance intensities (p < 0.05). Regression analysis demonstrated that disturbance intensity is a significant predictor of nutrient variability, particularly affecting soil N and P content. Effect sizes indicated that disturbance has a considerable impact on plant P levels, while Principal Component Analysis (PCA) highlighted distinct clustering of sites based on nutrient stoichiometric ratios, explaining 68% of the variance. The findings underscore the critical role of disturbance intensity in shaping the ecological stoichiometry of wetland ecosystems.
Conclusion
The findings of this study indicate the significant impacts of disturbance intensity on the stoichiometric traits of soil and plants, particularly highlighted by the elevated C and N levels in PJW under high disturbance conditions. These variations suggest that disturbance regimes could play a critical role in shaping ecological stoichiometry, although further experimental studies are required to delineate the causative mechanisms behind these patterns.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.