重新配置大肠杆菌电子传递链,提高反式-2-癸烯酸的产量。

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS ACS Synthetic Biology Pub Date : 2024-11-15 Epub Date: 2024-10-17 DOI:10.1021/acssynbio.4c00451
Ben Liu, HaoYang Wang, ChunLi Su, SiFan ShangGuan, YiSang Zhang, ShiHao Nie, Ruiming Wang, Piwu Li, Junqing Wang, Jing Su
{"title":"重新配置大肠杆菌电子传递链,提高反式-2-癸烯酸的产量。","authors":"Ben Liu, HaoYang Wang, ChunLi Su, SiFan ShangGuan, YiSang Zhang, ShiHao Nie, Ruiming Wang, Piwu Li, Junqing Wang, Jing Su","doi":"10.1021/acssynbio.4c00451","DOIUrl":null,"url":null,"abstract":"<p><p><i>trans</i>-2-Decenoic acid is a pivotal α,β-medium-chain unsaturated fatty acid that serves as an essential intermediary in the synthesis of 10-hydroxy-2-decenoic acid and various pharmaceutical compounds. Biosynthesis yield of <i>trans</i>-2-decenoic acid by decanoic acid has significantly improved in recent years; however, the oxidative stress of <i>Escherichia coli</i> at high fatty acid concentrations restricts the conversion rate. Here, we introduced a combination of rational design and metabolic rewiring of the <i>E. coli</i> electron transport chain (ETC) to improve <i>trans</i>-2-decenoic acid production. Overexpressing ubiquinone (UbQ) biosynthesis genes enhanced the expression of ETC complex III: UbQ to reduce reactive oxygen species (ROS) accumulation. Furthermore, applying rotenone to inhibit ETC complex I improved the electron transfer efficiency of complex II. The integration of Vitamin B<sub>5</sub> and B<sub>2</sub> into the fermentation process increased the activities of fatty acyl-CoA synthetase (<sup><i>Ma</i></sup><i>MACS</i>) and fatty acyl-CoA dehydrogenase (<sup><i>Pp</i></sup><i>fadE</i>). Finally, the constructed <i>E. coli</i> BL21(DE3)(Δ<i>fadBJR</i>/pCDFDuet-1-<sup><i>Pp</i></sup><i>fadE</i>-<sup><i>Ma</i></sup><i>MACS</i>/pRSFDuet-1-sumo-<sup><i>Ct</i></sup><i>ydiI</i>-<i>ubiI</i>) strain exhibited a 51.50% decrease in ROS and a 93.33% enhancement in <i>trans</i>-2-decenoic acid yield, reaching 1.45 g/L after 66 h, which is the highest yield reported for flask fermentation. This study reports the feasibility of rewiring the ETC regulation and energy metabolism to improve α,β-UCA biosynthesis efficiency.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconfiguring the <i>Escherichia coli</i> Electron Transport Chain to Enhance <i>trans</i>-2-Decenoic Acid Production.\",\"authors\":\"Ben Liu, HaoYang Wang, ChunLi Su, SiFan ShangGuan, YiSang Zhang, ShiHao Nie, Ruiming Wang, Piwu Li, Junqing Wang, Jing Su\",\"doi\":\"10.1021/acssynbio.4c00451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>trans</i>-2-Decenoic acid is a pivotal α,β-medium-chain unsaturated fatty acid that serves as an essential intermediary in the synthesis of 10-hydroxy-2-decenoic acid and various pharmaceutical compounds. Biosynthesis yield of <i>trans</i>-2-decenoic acid by decanoic acid has significantly improved in recent years; however, the oxidative stress of <i>Escherichia coli</i> at high fatty acid concentrations restricts the conversion rate. Here, we introduced a combination of rational design and metabolic rewiring of the <i>E. coli</i> electron transport chain (ETC) to improve <i>trans</i>-2-decenoic acid production. Overexpressing ubiquinone (UbQ) biosynthesis genes enhanced the expression of ETC complex III: UbQ to reduce reactive oxygen species (ROS) accumulation. Furthermore, applying rotenone to inhibit ETC complex I improved the electron transfer efficiency of complex II. The integration of Vitamin B<sub>5</sub> and B<sub>2</sub> into the fermentation process increased the activities of fatty acyl-CoA synthetase (<sup><i>Ma</i></sup><i>MACS</i>) and fatty acyl-CoA dehydrogenase (<sup><i>Pp</i></sup><i>fadE</i>). Finally, the constructed <i>E. coli</i> BL21(DE3)(Δ<i>fadBJR</i>/pCDFDuet-1-<sup><i>Pp</i></sup><i>fadE</i>-<sup><i>Ma</i></sup><i>MACS</i>/pRSFDuet-1-sumo-<sup><i>Ct</i></sup><i>ydiI</i>-<i>ubiI</i>) strain exhibited a 51.50% decrease in ROS and a 93.33% enhancement in <i>trans</i>-2-decenoic acid yield, reaching 1.45 g/L after 66 h, which is the highest yield reported for flask fermentation. This study reports the feasibility of rewiring the ETC regulation and energy metabolism to improve α,β-UCA biosynthesis efficiency.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acssynbio.4c00451\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00451","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

反式-2-癸烯酸是一种重要的α,β-中链不饱和脂肪酸,是合成 10-羟基-2-癸烯酸和各种药物化合物的重要中间体。近年来,癸酸生物合成反式-2-癸烯酸的产率显著提高;然而,在脂肪酸浓度较高时,大肠杆菌的氧化应激限制了转化率。在此,我们采用合理设计和大肠杆菌电子传递链(ETC)代谢重构相结合的方法来提高反式-2-癸烯酸的产量。过量表达泛醌(UbQ)生物合成基因可增强 ETC 复合物 III: UbQ 的表达,从而减少活性氧(ROS)的积累。此外,使用鱼藤酮抑制 ETC 复合物 I 可提高复合物 II 的电子传递效率。在发酵过程中加入维生素 B5 和 B2 可提高脂肪酰-CoA 合成酶(MaMACS)和脂肪酰-CoA 脱氢酶(PpfadE)的活性。最后,构建的大肠杆菌 BL21(DE3)(ΔfadBJR/pCDFDuet-1-PpfadE-MaMACS/pRSFDuet-1-sumo-CtydiI-ubiI)菌株的 ROS 减少了 51.50%,反式-2-癸烯酸产量提高了 93.33%,66 h 后达到 1.45 g/L,这是目前报道的瓶式发酵的最高产量。本研究报告了重新连接 ETC 调节和能量代谢以提高 α、β-UCA 生物合成效率的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconfiguring the Escherichia coli Electron Transport Chain to Enhance trans-2-Decenoic Acid Production.

trans-2-Decenoic acid is a pivotal α,β-medium-chain unsaturated fatty acid that serves as an essential intermediary in the synthesis of 10-hydroxy-2-decenoic acid and various pharmaceutical compounds. Biosynthesis yield of trans-2-decenoic acid by decanoic acid has significantly improved in recent years; however, the oxidative stress of Escherichia coli at high fatty acid concentrations restricts the conversion rate. Here, we introduced a combination of rational design and metabolic rewiring of the E. coli electron transport chain (ETC) to improve trans-2-decenoic acid production. Overexpressing ubiquinone (UbQ) biosynthesis genes enhanced the expression of ETC complex III: UbQ to reduce reactive oxygen species (ROS) accumulation. Furthermore, applying rotenone to inhibit ETC complex I improved the electron transfer efficiency of complex II. The integration of Vitamin B5 and B2 into the fermentation process increased the activities of fatty acyl-CoA synthetase (MaMACS) and fatty acyl-CoA dehydrogenase (PpfadE). Finally, the constructed E. coli BL21(DE3)(ΔfadBJR/pCDFDuet-1-PpfadE-MaMACS/pRSFDuet-1-sumo-CtydiI-ubiI) strain exhibited a 51.50% decrease in ROS and a 93.33% enhancement in trans-2-decenoic acid yield, reaching 1.45 g/L after 66 h, which is the highest yield reported for flask fermentation. This study reports the feasibility of rewiring the ETC regulation and energy metabolism to improve α,β-UCA biosynthesis efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Ribozyme-Mediated Gene-Fragment Complementation for Nondestructive Reporting of DNA Transfer within Soil. Macroscopic Assembly of Materials with Engineered Bacterial Spores via Coiled-Coil Interaction. A High-Throughput Screen for Antiproliferative Peptides in Mammalian Cells Identifies Key Transcription Factor Families.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1