Rawan A Alzahrani, Nisreen Alshehri, Alaa A Alessa, Doha A Amer, Oleksandr Matiash, Catherine S P De Castro, Shahidul Alam, José P Jurado, Julien Gorenflot, Frédéric Laquai, Christopher E Petoukhoff
{"title":"利用反射偏振光学显微镜快速比较 P3HT:PCBM 薄膜的结晶度和相分离。","authors":"Rawan A Alzahrani, Nisreen Alshehri, Alaa A Alessa, Doha A Amer, Oleksandr Matiash, Catherine S P De Castro, Shahidul Alam, José P Jurado, Julien Gorenflot, Frédéric Laquai, Christopher E Petoukhoff","doi":"10.1002/marc.202400577","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid, nondestructive characterization techniques for evaluating the degree of crystallinity and phase segregation of organic semiconductor blend thin films are highly desired for in-line, automated optoelectronic device fabrication facilities. Here, it is demonstrated that reflection polarized optical microscopy (POM), a simple technique capable of imaging local anisotropy of materials, is capable of determining the relative degree of crystallinity and phase segregation of thin films of polymer:fullerene blends. While previous works on POM of organic semiconductors have largely employed the transmission geometry, it is demonstrated that reflection POM provides 3× greater contrast. The optimal configuration is described to maximize contrast from POM images of polymer:fullerene films, which requires Köhler illumination and slightly uncrossed polarizers, with an uncrossing angle of ±3°. It is quantitatively demonstrated that contrast in POM images directly correlates with 1) the degree of polymer crystallinity and 2) the degree of phase segregation between polymer and fullerene domains. The origin of the bright and dark domains in POM is identified as arising from symmetry-broken liquid crystalline phases (i.e., dark conglomerates), and it is proven that they have no correlation with surface topography. The use of reflection POM as a rapid diagnostic tool for automated device fabrication facilities is discussed.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400577"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Use of Reflection Polarized Optical Microscopy for Rapid Comparison of Crystallinity and Phase Segregation of P3HT:PCBM Thin Films.\",\"authors\":\"Rawan A Alzahrani, Nisreen Alshehri, Alaa A Alessa, Doha A Amer, Oleksandr Matiash, Catherine S P De Castro, Shahidul Alam, José P Jurado, Julien Gorenflot, Frédéric Laquai, Christopher E Petoukhoff\",\"doi\":\"10.1002/marc.202400577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rapid, nondestructive characterization techniques for evaluating the degree of crystallinity and phase segregation of organic semiconductor blend thin films are highly desired for in-line, automated optoelectronic device fabrication facilities. Here, it is demonstrated that reflection polarized optical microscopy (POM), a simple technique capable of imaging local anisotropy of materials, is capable of determining the relative degree of crystallinity and phase segregation of thin films of polymer:fullerene blends. While previous works on POM of organic semiconductors have largely employed the transmission geometry, it is demonstrated that reflection POM provides 3× greater contrast. The optimal configuration is described to maximize contrast from POM images of polymer:fullerene films, which requires Köhler illumination and slightly uncrossed polarizers, with an uncrossing angle of ±3°. It is quantitatively demonstrated that contrast in POM images directly correlates with 1) the degree of polymer crystallinity and 2) the degree of phase segregation between polymer and fullerene domains. The origin of the bright and dark domains in POM is identified as arising from symmetry-broken liquid crystalline phases (i.e., dark conglomerates), and it is proven that they have no correlation with surface topography. The use of reflection POM as a rapid diagnostic tool for automated device fabrication facilities is discussed.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\" \",\"pages\":\"e2400577\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202400577\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400577","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
On the Use of Reflection Polarized Optical Microscopy for Rapid Comparison of Crystallinity and Phase Segregation of P3HT:PCBM Thin Films.
Rapid, nondestructive characterization techniques for evaluating the degree of crystallinity and phase segregation of organic semiconductor blend thin films are highly desired for in-line, automated optoelectronic device fabrication facilities. Here, it is demonstrated that reflection polarized optical microscopy (POM), a simple technique capable of imaging local anisotropy of materials, is capable of determining the relative degree of crystallinity and phase segregation of thin films of polymer:fullerene blends. While previous works on POM of organic semiconductors have largely employed the transmission geometry, it is demonstrated that reflection POM provides 3× greater contrast. The optimal configuration is described to maximize contrast from POM images of polymer:fullerene films, which requires Köhler illumination and slightly uncrossed polarizers, with an uncrossing angle of ±3°. It is quantitatively demonstrated that contrast in POM images directly correlates with 1) the degree of polymer crystallinity and 2) the degree of phase segregation between polymer and fullerene domains. The origin of the bright and dark domains in POM is identified as arising from symmetry-broken liquid crystalline phases (i.e., dark conglomerates), and it is proven that they have no correlation with surface topography. The use of reflection POM as a rapid diagnostic tool for automated device fabrication facilities is discussed.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.