PdbCRF5 的过表达通过下调 PdbbZIP61 来介导杨树的活性氧清除和 ABA 合成,从而负调控杨树的耐盐性。

IF 6 1区 生物学 Q1 PLANT SCIENCES Plant, Cell & Environment Pub Date : 2024-10-15 DOI:10.1111/pce.15199
Xiaojin Lei, Jiaru Fang, Ziqian Zhang, Zhengyang Li, Yumeng Xu, Qingjun Xie, Yuanyuan Wang, Zhongyuan Liu, Yanmin Wang, Caiqiu Gao
{"title":"PdbCRF5 的过表达通过下调 PdbbZIP61 来介导杨树的活性氧清除和 ABA 合成,从而负调控杨树的耐盐性。","authors":"Xiaojin Lei, Jiaru Fang, Ziqian Zhang, Zhengyang Li, Yumeng Xu, Qingjun Xie, Yuanyuan Wang, Zhongyuan Liu, Yanmin Wang, Caiqiu Gao","doi":"10.1111/pce.15199","DOIUrl":null,"url":null,"abstract":"<p><p>Salt stress is the main factor limiting the large-scale cultivation of Shanxin poplar; therefore, improving its salt tolerance is crucial. In this study, we identified and characterized a CRF gene (PdbCRF5) in Shanxin poplar. Compared with the wild-type poplar, the Shanxin poplar overexpressing PdbCRF5 were more sensitive to salt stress. The PdbCRF5-silenced plants exhibited improved salt tolerance. ChIP‒PCR, EMSA, and Y1H confirmed that PdbCRF5 can regulate the expression of the PdbbZIP61 by binding to ABRE element. Further analysis revealed that the overexpression of PdbbZIP61 can reduce cell damage by increasing ROS scavenging, and on the other hand, overexpression of PdbbZIP61 can improve the salt tolerance of Shanxin poplar by regulating the expression of the PdbNCED genes to increase the ABA content. In addition, we also demonstrated that PdbCRF5 can inhibit the expression of the PdbbZIP61 in combination with PdbCRF6. The overexpression of PdbCRF6 also reduced the salt tolerance of Shanxin poplar. Therefore, we found that PdbCRF5 negatively regulates the salt tolerance of Shanxin poplar by inhibiting the PdbbZIP61, indicating that PdbCRF5 plays an important role in the tolerance of Shanxin poplar to salt stress and is an important candidate gene for gene editing and breeding in forest trees.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PdbCRF5 Overexpression Negatively Regulates Salt Tolerance by Downregulating PdbbZIP61 to Mediate Reactive Oxygen Species Scavenging and ABA Synthesis in Populus davidiana × P. bolleana.\",\"authors\":\"Xiaojin Lei, Jiaru Fang, Ziqian Zhang, Zhengyang Li, Yumeng Xu, Qingjun Xie, Yuanyuan Wang, Zhongyuan Liu, Yanmin Wang, Caiqiu Gao\",\"doi\":\"10.1111/pce.15199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Salt stress is the main factor limiting the large-scale cultivation of Shanxin poplar; therefore, improving its salt tolerance is crucial. In this study, we identified and characterized a CRF gene (PdbCRF5) in Shanxin poplar. Compared with the wild-type poplar, the Shanxin poplar overexpressing PdbCRF5 were more sensitive to salt stress. The PdbCRF5-silenced plants exhibited improved salt tolerance. ChIP‒PCR, EMSA, and Y1H confirmed that PdbCRF5 can regulate the expression of the PdbbZIP61 by binding to ABRE element. Further analysis revealed that the overexpression of PdbbZIP61 can reduce cell damage by increasing ROS scavenging, and on the other hand, overexpression of PdbbZIP61 can improve the salt tolerance of Shanxin poplar by regulating the expression of the PdbNCED genes to increase the ABA content. In addition, we also demonstrated that PdbCRF5 can inhibit the expression of the PdbbZIP61 in combination with PdbCRF6. The overexpression of PdbCRF6 also reduced the salt tolerance of Shanxin poplar. Therefore, we found that PdbCRF5 negatively regulates the salt tolerance of Shanxin poplar by inhibiting the PdbbZIP61, indicating that PdbCRF5 plays an important role in the tolerance of Shanxin poplar to salt stress and is an important candidate gene for gene editing and breeding in forest trees.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.15199\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15199","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

盐胁迫是限制山心杨大规模种植的主要因素,因此,提高山心杨的耐盐性至关重要。本研究鉴定并表征了山心杨中的 CRF 基因(PdbCRF5)。与野生型山心杨相比,过表达 PdbCRF5 的山心杨对盐胁迫更敏感。PdbCRF5沉默的植株表现出更好的耐盐性。ChIP-PCR、EMSA和Y1H证实,PdbCRF5可通过与ABRE元件结合来调控PdbbZIP61的表达。进一步的分析表明,过表达 PdbbZIP61 可通过增加 ROS 清除来减少细胞损伤,另一方面,过表达 PdbbZIP61 可通过调控 PdbNCED 基因的表达来增加 ABA 含量,从而提高山心杨的耐盐性。此外,我们还证明了 PdbCRF5 与 PdbCRF6 结合可抑制 PdbbZIP61 的表达。过表达 PdbCRF6 也会降低山心杨的耐盐性。因此,我们发现PdbCRF5通过抑制PdbbZIP61负调控山心杨的耐盐性,表明PdbCRF5在山心杨耐盐胁迫中起着重要作用,是林木基因编辑和育种的重要候选基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PdbCRF5 Overexpression Negatively Regulates Salt Tolerance by Downregulating PdbbZIP61 to Mediate Reactive Oxygen Species Scavenging and ABA Synthesis in Populus davidiana × P. bolleana.

Salt stress is the main factor limiting the large-scale cultivation of Shanxin poplar; therefore, improving its salt tolerance is crucial. In this study, we identified and characterized a CRF gene (PdbCRF5) in Shanxin poplar. Compared with the wild-type poplar, the Shanxin poplar overexpressing PdbCRF5 were more sensitive to salt stress. The PdbCRF5-silenced plants exhibited improved salt tolerance. ChIP‒PCR, EMSA, and Y1H confirmed that PdbCRF5 can regulate the expression of the PdbbZIP61 by binding to ABRE element. Further analysis revealed that the overexpression of PdbbZIP61 can reduce cell damage by increasing ROS scavenging, and on the other hand, overexpression of PdbbZIP61 can improve the salt tolerance of Shanxin poplar by regulating the expression of the PdbNCED genes to increase the ABA content. In addition, we also demonstrated that PdbCRF5 can inhibit the expression of the PdbbZIP61 in combination with PdbCRF6. The overexpression of PdbCRF6 also reduced the salt tolerance of Shanxin poplar. Therefore, we found that PdbCRF5 negatively regulates the salt tolerance of Shanxin poplar by inhibiting the PdbbZIP61, indicating that PdbCRF5 plays an important role in the tolerance of Shanxin poplar to salt stress and is an important candidate gene for gene editing and breeding in forest trees.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
期刊最新文献
Multi-Omics Analyses Offer Novel Insights into the Selection of Sugar and Lipid Metabolism During Maize Domestication and Improvement. Non-Specific Lipid Transfer Protein StLTP6 Promotes Virus Infection by Inhibiting Jasmonic Acid Signalling Pathway in Response to PVS TGB1. BcVQ11A-BcWRKY23-BcWRKY25 Module Is Involved in Thermotolerance by Regulating Phenylalanine Ammonia-Lyase Activity in Non-Heading Chinese Cabbage. DNA Hypomethylation Is One of the Epigenetic Mechanisms Involved in Salt-Stress Priming in Soybean Seedlings. Warming Mitigates Ozone Damage to Wheat Photosynthesis in a FACE Experiment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1