Shuxian Hou, Ye Hong, Jihua Shang, Yimei Wang, Xuechao Shi, Xinxin Liu, Guoqiang Yang, Yuxuan Wang, Fei Ge, Yao Xiao, Chaldi Kaoutar, Yuan Wu, Jun Wang
{"title":"基于 BSA-ZnO&Quercetin 的多功能仿生自组装系统的构建及其抗菌机理研究。","authors":"Shuxian Hou, Ye Hong, Jihua Shang, Yimei Wang, Xuechao Shi, Xinxin Liu, Guoqiang Yang, Yuxuan Wang, Fei Ge, Yao Xiao, Chaldi Kaoutar, Yuan Wu, Jun Wang","doi":"10.1016/j.colsurfb.2024.114288","DOIUrl":null,"url":null,"abstract":"<p><p>The misuse of antibiotics has led to the growing problem of multidrug-resistant (MDR) bacteria, and there is still a lack of effective antibacterial agents that can replace antibiotics. Therefore, the design and development of multifunctional nanomaterials with long-term inhibitory effects on drug-resistant bacteria are extremely challenging. In this study, a multifunctional biomimetic self-assembly system, BSA-ZnO&Quercetin, based on bovine serum albumin (BSA), ZnO, and quercetin, was established using a simple and controllable method. The prepared self-assembly system has high stability and biocompatibility, and could fully combine the performance advantages of each component. BSA-ZnO&Quercetin showed excellent broad-spectrum antibacterial activity without inducing bacterial resistance. The related antibacterial mechanism of BSA-ZnO&Quercetin primarily involves biofilm inhibition and destruction, and inducing the production of reactive oxygen species, resulting in the death of the bacteria. The biomimetic self-assembly system BSA-ZnO&Quercetin constructed in this research is expected to replace antibiotics for antibacterial application.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114288"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of BSA-ZnO&Quercetin based multifunctional bionic self-assembly system and their antibacterial mechanism study.\",\"authors\":\"Shuxian Hou, Ye Hong, Jihua Shang, Yimei Wang, Xuechao Shi, Xinxin Liu, Guoqiang Yang, Yuxuan Wang, Fei Ge, Yao Xiao, Chaldi Kaoutar, Yuan Wu, Jun Wang\",\"doi\":\"10.1016/j.colsurfb.2024.114288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The misuse of antibiotics has led to the growing problem of multidrug-resistant (MDR) bacteria, and there is still a lack of effective antibacterial agents that can replace antibiotics. Therefore, the design and development of multifunctional nanomaterials with long-term inhibitory effects on drug-resistant bacteria are extremely challenging. In this study, a multifunctional biomimetic self-assembly system, BSA-ZnO&Quercetin, based on bovine serum albumin (BSA), ZnO, and quercetin, was established using a simple and controllable method. The prepared self-assembly system has high stability and biocompatibility, and could fully combine the performance advantages of each component. BSA-ZnO&Quercetin showed excellent broad-spectrum antibacterial activity without inducing bacterial resistance. The related antibacterial mechanism of BSA-ZnO&Quercetin primarily involves biofilm inhibition and destruction, and inducing the production of reactive oxygen species, resulting in the death of the bacteria. The biomimetic self-assembly system BSA-ZnO&Quercetin constructed in this research is expected to replace antibiotics for antibacterial application.</p>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"245 \",\"pages\":\"114288\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1016/j.colsurfb.2024.114288\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114288","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Construction of BSA-ZnO&Quercetin based multifunctional bionic self-assembly system and their antibacterial mechanism study.
The misuse of antibiotics has led to the growing problem of multidrug-resistant (MDR) bacteria, and there is still a lack of effective antibacterial agents that can replace antibiotics. Therefore, the design and development of multifunctional nanomaterials with long-term inhibitory effects on drug-resistant bacteria are extremely challenging. In this study, a multifunctional biomimetic self-assembly system, BSA-ZnO&Quercetin, based on bovine serum albumin (BSA), ZnO, and quercetin, was established using a simple and controllable method. The prepared self-assembly system has high stability and biocompatibility, and could fully combine the performance advantages of each component. BSA-ZnO&Quercetin showed excellent broad-spectrum antibacterial activity without inducing bacterial resistance. The related antibacterial mechanism of BSA-ZnO&Quercetin primarily involves biofilm inhibition and destruction, and inducing the production of reactive oxygen species, resulting in the death of the bacteria. The biomimetic self-assembly system BSA-ZnO&Quercetin constructed in this research is expected to replace antibiotics for antibacterial application.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.