基于 TiO2 的可重复使用和非侵入性光动力透皮贴片 (RPT),用于治疗 MDR 阴性菌菌株,并通过 ROS 诱导的 RNS 协同方法促进伤口愈合。

IF 5.4 2区 医学 Q1 BIOPHYSICS Colloids and Surfaces B: Biointerfaces Pub Date : 2024-10-06 DOI:10.1016/j.colsurfb.2024.114301
Thala K, Aditi Machina, Shagufta Parveen, Lakshmi Narashimhan Ramana
{"title":"基于 TiO2 的可重复使用和非侵入性光动力透皮贴片 (RPT),用于治疗 MDR 阴性菌菌株,并通过 ROS 诱导的 RNS 协同方法促进伤口愈合。","authors":"Thala K, Aditi Machina, Shagufta Parveen, Lakshmi Narashimhan Ramana","doi":"10.1016/j.colsurfb.2024.114301","DOIUrl":null,"url":null,"abstract":"<p><p>Wound healing is delayed due to the infection and biofilm formation of antibiotic-resistant species of gram-negative bacteria especially Pseudomonas aeruginosa and Escherichia coli. Antibacterial photodynamic therapy provides an efficient therapeutic strategy for overcoming drug resistance by producing reactive oxygen species (ROS) and reactive nitrogen species (RNS). Here, we have designed a low-cost light emitting diode (LED) based reusable and non-invasive titanium dioxide nanoparticles patch which is sandwiched between the thin polymer layers. The light-induced pore formation in the polymeric film due to the free radical, in turn, passes through the system and kills the bacteria rather than nanoparticles entering the system resulting in the reusability nature of the patch. The patch's in vitro antibacterial and antibiofilm activity and their mechanism (synergic ROS-induced RNS) were studied. In addition, the reusable antibacterial properties, biocompatibility and wound-healing properties of the patch were also successfully elucidated.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114301"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reusable and non-invasive TiO<sub>2</sub>-based photodynamic transdermal patch (RPT) for treating MDR-negative bacteria strain and promote wound healing through a synergistic approach of ROS-induced RNS.\",\"authors\":\"Thala K, Aditi Machina, Shagufta Parveen, Lakshmi Narashimhan Ramana\",\"doi\":\"10.1016/j.colsurfb.2024.114301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wound healing is delayed due to the infection and biofilm formation of antibiotic-resistant species of gram-negative bacteria especially Pseudomonas aeruginosa and Escherichia coli. Antibacterial photodynamic therapy provides an efficient therapeutic strategy for overcoming drug resistance by producing reactive oxygen species (ROS) and reactive nitrogen species (RNS). Here, we have designed a low-cost light emitting diode (LED) based reusable and non-invasive titanium dioxide nanoparticles patch which is sandwiched between the thin polymer layers. The light-induced pore formation in the polymeric film due to the free radical, in turn, passes through the system and kills the bacteria rather than nanoparticles entering the system resulting in the reusability nature of the patch. The patch's in vitro antibacterial and antibiofilm activity and their mechanism (synergic ROS-induced RNS) were studied. In addition, the reusable antibacterial properties, biocompatibility and wound-healing properties of the patch were also successfully elucidated.</p>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"245 \",\"pages\":\"114301\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1016/j.colsurfb.2024.114301\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114301","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

由于耐抗生素的革兰氏阴性细菌(尤其是铜绿假单胞菌和大肠杆菌)的感染和生物膜的形成,伤口愈合延迟。抗菌光动力疗法通过产生活性氧(ROS)和活性氮(RNS),为克服耐药性提供了一种有效的治疗策略。在这里,我们设计了一种基于发光二极管(LED)的低成本、可重复使用且非侵入性的二氧化钛纳米粒子贴片,该贴片夹在薄聚合物层之间。自由基在聚合物薄膜中形成的光诱导孔隙反过来会通过系统杀死细菌,而不是纳米粒子进入系统,从而实现了贴片的可重复使用性。研究了贴片的体外抗菌和抗生物膜活性及其机制(ROS 诱导的 RNS 协同作用)。此外,还成功阐明了该贴片的可重复使用抗菌特性、生物相容性和伤口愈合特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reusable and non-invasive TiO2-based photodynamic transdermal patch (RPT) for treating MDR-negative bacteria strain and promote wound healing through a synergistic approach of ROS-induced RNS.

Wound healing is delayed due to the infection and biofilm formation of antibiotic-resistant species of gram-negative bacteria especially Pseudomonas aeruginosa and Escherichia coli. Antibacterial photodynamic therapy provides an efficient therapeutic strategy for overcoming drug resistance by producing reactive oxygen species (ROS) and reactive nitrogen species (RNS). Here, we have designed a low-cost light emitting diode (LED) based reusable and non-invasive titanium dioxide nanoparticles patch which is sandwiched between the thin polymer layers. The light-induced pore formation in the polymeric film due to the free radical, in turn, passes through the system and kills the bacteria rather than nanoparticles entering the system resulting in the reusability nature of the patch. The patch's in vitro antibacterial and antibiofilm activity and their mechanism (synergic ROS-induced RNS) were studied. In addition, the reusable antibacterial properties, biocompatibility and wound-healing properties of the patch were also successfully elucidated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
期刊最新文献
Composite diatom fluorescent sensor substrate enriched with CdSe/ZnS quantum dots on the surface by biofabrication Manganese-doped carbon dots with catalase-like activity enable MRI-guided enhanced photodynamic therapy Sulfasalazine-loaded nanoframes: A new frontier in bladder cancer therapy through ferroptosis induction Synergistic NIR and ultrasound-responsive tellurium nanorods for enhanced antibacterial and osteogenic activity Low toxicity ginsenoside Rg1-carbon nanodots as a potential therapeutic agent for human non-small cell lung cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1