Yabin Kuang , Minzhu Xie , Zhanhong Zhao , Dongze Deng , Ergude Bao
{"title":"利用完全配对和弱配对多组学数据进行癌症亚型的多视角对比聚类。","authors":"Yabin Kuang , Minzhu Xie , Zhanhong Zhao , Dongze Deng , Ergude Bao","doi":"10.1016/j.ymeth.2024.09.016","DOIUrl":null,"url":null,"abstract":"<div><div>The identification of cancer subtypes is crucial for advancing precision medicine, as it facilitates the development of more effective and personalized treatment and prevention strategies. With the development of high-throughput sequencing technologies, researchers now have access to a wealth of multi-omics data from cancer patients, making computational cancer subtyping increasingly feasible. One of the main challenges in integrating multi-omics data is handling missing data, since not all biomolecules are consistently measured across all samples. Current computational models based on multi-omics data for cancer subtyping often struggle with the challenge of weakly paired omics data. To address this challenge, we propose a novel unsupervised cancer subtyping model named Subtype-MVCC. This model leverages graph convolutional networks to extract and represent low-dimensional features from each omics data type, using intra-view and inter-view contrastive learning approaches. By incorporating a weighted average fusion strategy to unify the dimension of each sample, Subtype-MVCC effectively handles weakly paired multi-omics datasets. Comprehensive evaluations on established benchmark datasets demonstrate that Subtype-MVCC outperforms nine leading models in this domain. Additionally, simulations with varying levels of missing data highlight the model's robust performance in handling weakly paired omics data. The clinical relevance and survival outcomes associated with the identified subtypes further validate the interpretability and reliability of the clustering results produced by Subtype-MVCC.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"232 ","pages":"Pages 1-8"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-view contrastive clustering for cancer subtyping using fully and weakly paired multi-omics data\",\"authors\":\"Yabin Kuang , Minzhu Xie , Zhanhong Zhao , Dongze Deng , Ergude Bao\",\"doi\":\"10.1016/j.ymeth.2024.09.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The identification of cancer subtypes is crucial for advancing precision medicine, as it facilitates the development of more effective and personalized treatment and prevention strategies. With the development of high-throughput sequencing technologies, researchers now have access to a wealth of multi-omics data from cancer patients, making computational cancer subtyping increasingly feasible. One of the main challenges in integrating multi-omics data is handling missing data, since not all biomolecules are consistently measured across all samples. Current computational models based on multi-omics data for cancer subtyping often struggle with the challenge of weakly paired omics data. To address this challenge, we propose a novel unsupervised cancer subtyping model named Subtype-MVCC. This model leverages graph convolutional networks to extract and represent low-dimensional features from each omics data type, using intra-view and inter-view contrastive learning approaches. By incorporating a weighted average fusion strategy to unify the dimension of each sample, Subtype-MVCC effectively handles weakly paired multi-omics datasets. Comprehensive evaluations on established benchmark datasets demonstrate that Subtype-MVCC outperforms nine leading models in this domain. Additionally, simulations with varying levels of missing data highlight the model's robust performance in handling weakly paired omics data. The clinical relevance and survival outcomes associated with the identified subtypes further validate the interpretability and reliability of the clustering results produced by Subtype-MVCC.</div></div>\",\"PeriodicalId\":390,\"journal\":{\"name\":\"Methods\",\"volume\":\"232 \",\"pages\":\"Pages 1-8\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1046202324002147\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202324002147","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Multi-view contrastive clustering for cancer subtyping using fully and weakly paired multi-omics data
The identification of cancer subtypes is crucial for advancing precision medicine, as it facilitates the development of more effective and personalized treatment and prevention strategies. With the development of high-throughput sequencing technologies, researchers now have access to a wealth of multi-omics data from cancer patients, making computational cancer subtyping increasingly feasible. One of the main challenges in integrating multi-omics data is handling missing data, since not all biomolecules are consistently measured across all samples. Current computational models based on multi-omics data for cancer subtyping often struggle with the challenge of weakly paired omics data. To address this challenge, we propose a novel unsupervised cancer subtyping model named Subtype-MVCC. This model leverages graph convolutional networks to extract and represent low-dimensional features from each omics data type, using intra-view and inter-view contrastive learning approaches. By incorporating a weighted average fusion strategy to unify the dimension of each sample, Subtype-MVCC effectively handles weakly paired multi-omics datasets. Comprehensive evaluations on established benchmark datasets demonstrate that Subtype-MVCC outperforms nine leading models in this domain. Additionally, simulations with varying levels of missing data highlight the model's robust performance in handling weakly paired omics data. The clinical relevance and survival outcomes associated with the identified subtypes further validate the interpretability and reliability of the clustering results produced by Subtype-MVCC.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.