用于研究多个纵向变量的功能广义典型相关分析。

IF 1.4 4区 数学 Q3 BIOLOGY Biometrics Pub Date : 2024-10-03 DOI:10.1093/biomtc/ujae113
Lucas Sort, Laurent Le Brusquet, Arthur Tenenhaus
{"title":"用于研究多个纵向变量的功能广义典型相关分析。","authors":"Lucas Sort, Laurent Le Brusquet, Arthur Tenenhaus","doi":"10.1093/biomtc/ujae113","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we introduce functional generalized canonical correlation analysis, a new framework for exploring associations between multiple random processes observed jointly. The framework is based on the multiblock regularized generalized canonical correlation analysis framework. It is robust to sparsely and irregularly observed data, making it applicable in many settings. We establish the monotonic property of the solving procedure and introduce a Bayesian approach for estimating canonical components. We propose an extension of the framework that allows the integration of a univariate or multivariate response into the analysis, paving the way for predictive applications. We evaluate the method's efficiency in simulation studies and present a use case on a longitudinal dataset.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional generalized canonical correlation analysis for studying multiple longitudinal variables.\",\"authors\":\"Lucas Sort, Laurent Le Brusquet, Arthur Tenenhaus\",\"doi\":\"10.1093/biomtc/ujae113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we introduce functional generalized canonical correlation analysis, a new framework for exploring associations between multiple random processes observed jointly. The framework is based on the multiblock regularized generalized canonical correlation analysis framework. It is robust to sparsely and irregularly observed data, making it applicable in many settings. We establish the monotonic property of the solving procedure and introduce a Bayesian approach for estimating canonical components. We propose an extension of the framework that allows the integration of a univariate or multivariate response into the analysis, paving the way for predictive applications. We evaluate the method's efficiency in simulation studies and present a use case on a longitudinal dataset.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"80 4\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae113\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae113","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了功能广义典范相关分析,这是一种探索联合观测的多个随机过程之间关联的新框架。该框架基于多块正则化广义典范相关分析框架。它对稀疏和不规则观测数据具有鲁棒性,因此适用于多种环境。我们建立了求解过程的单调性,并引入了一种贝叶斯方法来估计典型成分。我们提出了框架的扩展,允许将单变量或多变量响应纳入分析,为预测应用铺平了道路。我们在模拟研究中评估了该方法的效率,并介绍了一个纵向数据集的使用案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functional generalized canonical correlation analysis for studying multiple longitudinal variables.

In this paper, we introduce functional generalized canonical correlation analysis, a new framework for exploring associations between multiple random processes observed jointly. The framework is based on the multiblock regularized generalized canonical correlation analysis framework. It is robust to sparsely and irregularly observed data, making it applicable in many settings. We establish the monotonic property of the solving procedure and introduce a Bayesian approach for estimating canonical components. We propose an extension of the framework that allows the integration of a univariate or multivariate response into the analysis, paving the way for predictive applications. We evaluate the method's efficiency in simulation studies and present a use case on a longitudinal dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
期刊最新文献
Composite dyadic models for spatio-temporal data. ROMI: a randomized two-stage basket trial design to optimize doses for multiple indications. Bayesian network-guided sparse regression with flexible varying effects. Group sequential testing of a treatment effect using a surrogate marker. On network deconvolution for undirected graphs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1