全面评估常规临床环境中基于人工智能辅助压缩传感的磁共振图像的成像质量。

IF 2.9 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING BMC Medical Imaging Pub Date : 2024-10-21 DOI:10.1186/s12880-024-01463-6
Adiraju Karthik, Kamal Aggarwal, Aakaar Kapoor, Dharmesh Singh, Lingzhi Hu, Akash Gandhamal, Dileep Kumar
{"title":"全面评估常规临床环境中基于人工智能辅助压缩传感的磁共振图像的成像质量。","authors":"Adiraju Karthik, Kamal Aggarwal, Aakaar Kapoor, Dharmesh Singh, Lingzhi Hu, Akash Gandhamal, Dileep Kumar","doi":"10.1186/s12880-024-01463-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Conventional MR acceleration techniques, such as compressed sensing, parallel imaging, and half Fourier often face limitations, including noise amplification, reduced signal-to-noise ratio (SNR) and increased susceptibility to artifacts, which can compromise image quality, especially in high-speed acquisitions. Artificial intelligence (AI)-assisted compressed sensing (ACS) has emerged as a novel approach that combines the conventional techniques with advanced AI algorithms. The objective of this study was to examine the imaging quality of the ACS approach by qualitative and quantitative analysis for brain, spine, kidney, liver, and knee MR imaging, as well as compare the performance of this method with conventional (non-ACS) MR imaging.</p><p><strong>Methods: </strong>This study included 50 subjects. Three radiologists independently assessed the quality of MR images based on artefacts, image sharpness, overall image quality and diagnostic efficacy. SNR, contrast-to-noise ratio (CNR), edge content (EC), enhancement measure (EME), scanning time were used for quantitative evaluation. The Cohen's kappa correlation coefficient (k) was employed to measure radiologists' inter-observer agreement, and the Mann Whitney U-test used for comparison between non-ACS and ACS.</p><p><strong>Results: </strong>The qualitative analysis of three radiologists demonstrated that ACS images showed superior clinical information than non-ACS images with a mean k of ~ 0.70. The images acquired with ACS approach showed statistically higher values (p < 0.05) for SNR, CNR, EC, and EME compared to the non-ACS images. Furthermore, the study's findings indicated that ACS-enabled images reduced scan time by more than 50% while maintaining high imaging quality.</p><p><strong>Conclusion: </strong>Integrating ACS technology into routine clinical settings has the potential to speed up image acquisition, improve image quality, and enhance diagnostic procedures and patient throughput.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"24 1","pages":"284"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494941/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive assessment of imaging quality of artificial intelligence-assisted compressed sensing-based MR images in routine clinical settings.\",\"authors\":\"Adiraju Karthik, Kamal Aggarwal, Aakaar Kapoor, Dharmesh Singh, Lingzhi Hu, Akash Gandhamal, Dileep Kumar\",\"doi\":\"10.1186/s12880-024-01463-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Conventional MR acceleration techniques, such as compressed sensing, parallel imaging, and half Fourier often face limitations, including noise amplification, reduced signal-to-noise ratio (SNR) and increased susceptibility to artifacts, which can compromise image quality, especially in high-speed acquisitions. Artificial intelligence (AI)-assisted compressed sensing (ACS) has emerged as a novel approach that combines the conventional techniques with advanced AI algorithms. The objective of this study was to examine the imaging quality of the ACS approach by qualitative and quantitative analysis for brain, spine, kidney, liver, and knee MR imaging, as well as compare the performance of this method with conventional (non-ACS) MR imaging.</p><p><strong>Methods: </strong>This study included 50 subjects. Three radiologists independently assessed the quality of MR images based on artefacts, image sharpness, overall image quality and diagnostic efficacy. SNR, contrast-to-noise ratio (CNR), edge content (EC), enhancement measure (EME), scanning time were used for quantitative evaluation. The Cohen's kappa correlation coefficient (k) was employed to measure radiologists' inter-observer agreement, and the Mann Whitney U-test used for comparison between non-ACS and ACS.</p><p><strong>Results: </strong>The qualitative analysis of three radiologists demonstrated that ACS images showed superior clinical information than non-ACS images with a mean k of ~ 0.70. The images acquired with ACS approach showed statistically higher values (p < 0.05) for SNR, CNR, EC, and EME compared to the non-ACS images. Furthermore, the study's findings indicated that ACS-enabled images reduced scan time by more than 50% while maintaining high imaging quality.</p><p><strong>Conclusion: </strong>Integrating ACS technology into routine clinical settings has the potential to speed up image acquisition, improve image quality, and enhance diagnostic procedures and patient throughput.</p>\",\"PeriodicalId\":9020,\"journal\":{\"name\":\"BMC Medical Imaging\",\"volume\":\"24 1\",\"pages\":\"284\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494941/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12880-024-01463-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-024-01463-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:传统的磁共振加速技术,如压缩传感、并行成像和半傅立叶,往往面临着各种限制,包括噪声放大、信噪比(SNR)降低和对伪影的敏感性增加,这些都会影响图像质量,尤其是在高速采集时。人工智能(AI)辅助压缩传感(ACS)是一种结合了传统技术和先进人工智能算法的新方法。本研究的目的是通过对脑、脊柱、肾脏、肝脏和膝关节磁共振成像的定性和定量分析,检验 ACS 方法的成像质量,并比较该方法与传统(非 ACS)磁共振成像的性能:本研究包括 50 名受试者。三名放射科医生根据伪影、图像清晰度、整体图像质量和诊断效果独立评估 MR 图像质量。信噪比(SNR)、对比-噪声比(CNR)、边缘内容(EC)、增强测量(EME)和扫描时间被用于定量评估。科恩卡帕相关系数(k)用于衡量放射科医生的观察者间一致性,曼-惠特尼U检验用于比较非ACS和ACS:结果:三位放射科医生的定性分析显示,ACS 图像比非 ACS 图像显示出更好的临床信息,平均 k 值约为 0.70。采用 ACS 方法获取的图像在统计学上显示出更高的值(p 结论:ACS 技术在临床常规检查中的应用将为临床医生提供更多的临床信息:将 ACS 技术整合到常规临床环境中,有可能加快图像采集速度、提高图像质量、改进诊断程序和病人吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive assessment of imaging quality of artificial intelligence-assisted compressed sensing-based MR images in routine clinical settings.

Background: Conventional MR acceleration techniques, such as compressed sensing, parallel imaging, and half Fourier often face limitations, including noise amplification, reduced signal-to-noise ratio (SNR) and increased susceptibility to artifacts, which can compromise image quality, especially in high-speed acquisitions. Artificial intelligence (AI)-assisted compressed sensing (ACS) has emerged as a novel approach that combines the conventional techniques with advanced AI algorithms. The objective of this study was to examine the imaging quality of the ACS approach by qualitative and quantitative analysis for brain, spine, kidney, liver, and knee MR imaging, as well as compare the performance of this method with conventional (non-ACS) MR imaging.

Methods: This study included 50 subjects. Three radiologists independently assessed the quality of MR images based on artefacts, image sharpness, overall image quality and diagnostic efficacy. SNR, contrast-to-noise ratio (CNR), edge content (EC), enhancement measure (EME), scanning time were used for quantitative evaluation. The Cohen's kappa correlation coefficient (k) was employed to measure radiologists' inter-observer agreement, and the Mann Whitney U-test used for comparison between non-ACS and ACS.

Results: The qualitative analysis of three radiologists demonstrated that ACS images showed superior clinical information than non-ACS images with a mean k of ~ 0.70. The images acquired with ACS approach showed statistically higher values (p < 0.05) for SNR, CNR, EC, and EME compared to the non-ACS images. Furthermore, the study's findings indicated that ACS-enabled images reduced scan time by more than 50% while maintaining high imaging quality.

Conclusion: Integrating ACS technology into routine clinical settings has the potential to speed up image acquisition, improve image quality, and enhance diagnostic procedures and patient throughput.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
期刊最新文献
In vitro detection of cancer cells using a novel fluorescent choline derivative. Prediction of esophageal fistula in radiotherapy/chemoradiotherapy for patients with advanced esophageal cancer by a clinical-deep learning radiomics model : Prediction of esophageal fistula in radiotherapy/chemoradiotherapy patients. Prior information guided deep-learning model for tumor bed segmentation in breast cancer radiotherapy. The predictive value of nomogram for adnexal cystic-solid masses based on O-RADS US, clinical and laboratory indicators. The study on ultrasound image classification using a dual-branch model based on Resnet50 guided by U-net segmentation results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1