{"title":"基于多模态超声特征的乳腺非肿块病变评估提名图:一项单中心研究。","authors":"Li-Fang Yu, Luo-Xi Zhu, Chao-Chao Dai, Xiao-Jing Xu, Yan-Juan Tan, Hong-Ju Yan, Ling-Yun Bao","doi":"10.1186/s12880-024-01462-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>It is challenging to correctly identify and diagnose breast nonmass lesions. This study aimed to explore the multimodal ultrasound features associated with malignant breast nonmass lesions (NMLs), and evaluate their combined diagnostic performance.</p><p><strong>Methods: </strong>This retrospective analysis was conducted on 573 breast NMLs, including 309 were benign and 264 were malignant, their multimodal ultrasound features (B-mode, color Doppler and strain elastography) were assessed by two experienced radiologists. Univariate and multivariate logistic regression analysises were used to explore multimodal ultrasound features associated with malignancy, and a nomogram was developed. Diagnostic performance and clinical utility were evaluated and validated by the receiver operating characteristic (ROC) curve, calibration curve and decision curve in the training and validation cohorts.</p><p><strong>Results: </strong>Multimodal ultrasound features including linear (odds ratio [OR] = 4.69) or segmental distribution (OR = 7.67), posterior shadowing (OR = 3.14), calcification (OR = 7.40), hypovascularity (OR = 0.38), elasticity scored 4 (OR = 7.00) and 5 (OR = 15.77) were independent factors associated with malignant breast NMLs. The nomogram based on these features exhibited diagnostic performance in the training and validation cohorts were comparable to that of experienced radiologists, with superior specificity (89.4%, 89.5% vs. 81.2%) and positive predictive value (PPV) (89.2%, 90.4% vs. 82.4%). The nomogram also demonstrated good calibration in both training and validation cohorts (all P > 0.05). Decision curve analysis indicated that interventions guided by the nomogram would be beneficial across a wide range of threshold probabilities (0.05-1 in the training cohort and 0.05-0.93 in the validation cohort).</p><p><strong>Conclusions: </strong>The combined use of linear or segmental distribution, posterior shadowing, calcification, hypervascularity and high elasticity score, displayed as a nomogram, demonstrated satisfied diagnostic performance for malignant breast NMLs, which may contribute to the imaging interpretation and clinical management of tumors.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"24 1","pages":"282"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492699/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nomogram based on multimodal ultrasound features for evaluating breast nonmass lesions: a single center study.\",\"authors\":\"Li-Fang Yu, Luo-Xi Zhu, Chao-Chao Dai, Xiao-Jing Xu, Yan-Juan Tan, Hong-Ju Yan, Ling-Yun Bao\",\"doi\":\"10.1186/s12880-024-01462-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>It is challenging to correctly identify and diagnose breast nonmass lesions. This study aimed to explore the multimodal ultrasound features associated with malignant breast nonmass lesions (NMLs), and evaluate their combined diagnostic performance.</p><p><strong>Methods: </strong>This retrospective analysis was conducted on 573 breast NMLs, including 309 were benign and 264 were malignant, their multimodal ultrasound features (B-mode, color Doppler and strain elastography) were assessed by two experienced radiologists. Univariate and multivariate logistic regression analysises were used to explore multimodal ultrasound features associated with malignancy, and a nomogram was developed. Diagnostic performance and clinical utility were evaluated and validated by the receiver operating characteristic (ROC) curve, calibration curve and decision curve in the training and validation cohorts.</p><p><strong>Results: </strong>Multimodal ultrasound features including linear (odds ratio [OR] = 4.69) or segmental distribution (OR = 7.67), posterior shadowing (OR = 3.14), calcification (OR = 7.40), hypovascularity (OR = 0.38), elasticity scored 4 (OR = 7.00) and 5 (OR = 15.77) were independent factors associated with malignant breast NMLs. The nomogram based on these features exhibited diagnostic performance in the training and validation cohorts were comparable to that of experienced radiologists, with superior specificity (89.4%, 89.5% vs. 81.2%) and positive predictive value (PPV) (89.2%, 90.4% vs. 82.4%). The nomogram also demonstrated good calibration in both training and validation cohorts (all P > 0.05). Decision curve analysis indicated that interventions guided by the nomogram would be beneficial across a wide range of threshold probabilities (0.05-1 in the training cohort and 0.05-0.93 in the validation cohort).</p><p><strong>Conclusions: </strong>The combined use of linear or segmental distribution, posterior shadowing, calcification, hypervascularity and high elasticity score, displayed as a nomogram, demonstrated satisfied diagnostic performance for malignant breast NMLs, which may contribute to the imaging interpretation and clinical management of tumors.</p>\",\"PeriodicalId\":9020,\"journal\":{\"name\":\"BMC Medical Imaging\",\"volume\":\"24 1\",\"pages\":\"282\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492699/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12880-024-01462-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-024-01462-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Nomogram based on multimodal ultrasound features for evaluating breast nonmass lesions: a single center study.
Background: It is challenging to correctly identify and diagnose breast nonmass lesions. This study aimed to explore the multimodal ultrasound features associated with malignant breast nonmass lesions (NMLs), and evaluate their combined diagnostic performance.
Methods: This retrospective analysis was conducted on 573 breast NMLs, including 309 were benign and 264 were malignant, their multimodal ultrasound features (B-mode, color Doppler and strain elastography) were assessed by two experienced radiologists. Univariate and multivariate logistic regression analysises were used to explore multimodal ultrasound features associated with malignancy, and a nomogram was developed. Diagnostic performance and clinical utility were evaluated and validated by the receiver operating characteristic (ROC) curve, calibration curve and decision curve in the training and validation cohorts.
Results: Multimodal ultrasound features including linear (odds ratio [OR] = 4.69) or segmental distribution (OR = 7.67), posterior shadowing (OR = 3.14), calcification (OR = 7.40), hypovascularity (OR = 0.38), elasticity scored 4 (OR = 7.00) and 5 (OR = 15.77) were independent factors associated with malignant breast NMLs. The nomogram based on these features exhibited diagnostic performance in the training and validation cohorts were comparable to that of experienced radiologists, with superior specificity (89.4%, 89.5% vs. 81.2%) and positive predictive value (PPV) (89.2%, 90.4% vs. 82.4%). The nomogram also demonstrated good calibration in both training and validation cohorts (all P > 0.05). Decision curve analysis indicated that interventions guided by the nomogram would be beneficial across a wide range of threshold probabilities (0.05-1 in the training cohort and 0.05-0.93 in the validation cohort).
Conclusions: The combined use of linear or segmental distribution, posterior shadowing, calcification, hypervascularity and high elasticity score, displayed as a nomogram, demonstrated satisfied diagnostic performance for malignant breast NMLs, which may contribute to the imaging interpretation and clinical management of tumors.
期刊介绍:
BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.