Jinyun Ma , Qijin Lu , Yan Zhao , Xiaohan Wang, Guiqing Ding, Yuanhua Wang, Xiaodong Cheng
{"title":"在实验性自身免疫性脑脊髓炎中,黄芪多糖通过抑制Sema4D-PlexinB2信号传导来调节小胶质细胞-星形胶质细胞之间的串扰。","authors":"Jinyun Ma , Qijin Lu , Yan Zhao , Xiaohan Wang, Guiqing Ding, Yuanhua Wang, Xiaodong Cheng","doi":"10.1016/j.brainres.2024.149275","DOIUrl":null,"url":null,"abstract":"<div><div>The crosstalk between microglia inflamed in multiple sclerosis (MIMS) and astrocytes inflamed in MS (AIMS) is a crucial factor in the formation of the central inflammatory microenvironment and neurotoxicity. Astragalus polysaccharides (APS), an important bioactive component extracted from the dried root of Astragalus, was previously found by our team to attenuate the formation of pro-inflammatory microglia and neurological dysfunction in the experimental autoimmune encephalomyelitis (EAE) mice, a classic model of MS. To investigate the effect of APS on the MIMS-AIMS crosstalk and its underlying mechanism, in this study, a mouse model of EAE and a co-culture model of microglia-astrocytes <em>in vitro</em> were established. It was discovered that APS can alleviate the neurological dysfunction of EAE mice and effectively inhibit the formation of MIMS and AIMS both <em>in vivo</em> and <em>in vitro</em>. Furthermore, it was found that APS can suppress the inflammatory factors of MIMS-AIMS crosstalk in EAE mice and the resulting neurotoxicity <em>in vivo</em> and <em>in vitro</em>. The Sema4D-PlexinB2 signaling is essential for MIMS-AIMS crosstalk and promotes CNS inflammation. We demonstrated that APS can inhibit this signaling <em>in vivo</em> and <em>in vitro</em>. Treatment of recombinant Sema4D protein on cultured astrocytes <em>in vitro</em> significantly increases pro-inflammatory and neurotoxic factors, while APS significantly inhibits them. Conversely, after knockdown of Sema4D expression in microglia, APS no longer improves the neurotoxicity from MIMS-AIMS crosstalk. Overall, these results indicate that APS may modulate MIMS-AIMS crosstalk via the Sema4D-PlexinB2 signaling. This study provides a scientific basis for APS as a potential treatment candidate for demyelinating diseases.</div></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1845 ","pages":"Article 149275"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microglia-astrocyte crosstalk is regulated by Astragalus polysaccharides mediated through suppression of Sema4D-PlexinB2 signaling in experimental autoimmune encephalomyelitis\",\"authors\":\"Jinyun Ma , Qijin Lu , Yan Zhao , Xiaohan Wang, Guiqing Ding, Yuanhua Wang, Xiaodong Cheng\",\"doi\":\"10.1016/j.brainres.2024.149275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The crosstalk between microglia inflamed in multiple sclerosis (MIMS) and astrocytes inflamed in MS (AIMS) is a crucial factor in the formation of the central inflammatory microenvironment and neurotoxicity. Astragalus polysaccharides (APS), an important bioactive component extracted from the dried root of Astragalus, was previously found by our team to attenuate the formation of pro-inflammatory microglia and neurological dysfunction in the experimental autoimmune encephalomyelitis (EAE) mice, a classic model of MS. To investigate the effect of APS on the MIMS-AIMS crosstalk and its underlying mechanism, in this study, a mouse model of EAE and a co-culture model of microglia-astrocytes <em>in vitro</em> were established. It was discovered that APS can alleviate the neurological dysfunction of EAE mice and effectively inhibit the formation of MIMS and AIMS both <em>in vivo</em> and <em>in vitro</em>. Furthermore, it was found that APS can suppress the inflammatory factors of MIMS-AIMS crosstalk in EAE mice and the resulting neurotoxicity <em>in vivo</em> and <em>in vitro</em>. The Sema4D-PlexinB2 signaling is essential for MIMS-AIMS crosstalk and promotes CNS inflammation. We demonstrated that APS can inhibit this signaling <em>in vivo</em> and <em>in vitro</em>. Treatment of recombinant Sema4D protein on cultured astrocytes <em>in vitro</em> significantly increases pro-inflammatory and neurotoxic factors, while APS significantly inhibits them. Conversely, after knockdown of Sema4D expression in microglia, APS no longer improves the neurotoxicity from MIMS-AIMS crosstalk. Overall, these results indicate that APS may modulate MIMS-AIMS crosstalk via the Sema4D-PlexinB2 signaling. This study provides a scientific basis for APS as a potential treatment candidate for demyelinating diseases.</div></div>\",\"PeriodicalId\":9083,\"journal\":{\"name\":\"Brain Research\",\"volume\":\"1845 \",\"pages\":\"Article 149275\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006899324005298\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006899324005298","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Microglia-astrocyte crosstalk is regulated by Astragalus polysaccharides mediated through suppression of Sema4D-PlexinB2 signaling in experimental autoimmune encephalomyelitis
The crosstalk between microglia inflamed in multiple sclerosis (MIMS) and astrocytes inflamed in MS (AIMS) is a crucial factor in the formation of the central inflammatory microenvironment and neurotoxicity. Astragalus polysaccharides (APS), an important bioactive component extracted from the dried root of Astragalus, was previously found by our team to attenuate the formation of pro-inflammatory microglia and neurological dysfunction in the experimental autoimmune encephalomyelitis (EAE) mice, a classic model of MS. To investigate the effect of APS on the MIMS-AIMS crosstalk and its underlying mechanism, in this study, a mouse model of EAE and a co-culture model of microglia-astrocytes in vitro were established. It was discovered that APS can alleviate the neurological dysfunction of EAE mice and effectively inhibit the formation of MIMS and AIMS both in vivo and in vitro. Furthermore, it was found that APS can suppress the inflammatory factors of MIMS-AIMS crosstalk in EAE mice and the resulting neurotoxicity in vivo and in vitro. The Sema4D-PlexinB2 signaling is essential for MIMS-AIMS crosstalk and promotes CNS inflammation. We demonstrated that APS can inhibit this signaling in vivo and in vitro. Treatment of recombinant Sema4D protein on cultured astrocytes in vitro significantly increases pro-inflammatory and neurotoxic factors, while APS significantly inhibits them. Conversely, after knockdown of Sema4D expression in microglia, APS no longer improves the neurotoxicity from MIMS-AIMS crosstalk. Overall, these results indicate that APS may modulate MIMS-AIMS crosstalk via the Sema4D-PlexinB2 signaling. This study provides a scientific basis for APS as a potential treatment candidate for demyelinating diseases.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.