Yourui Han, Bolin Chen, Jun Bian, Ruiming Kang, Xuequn Shang
{"title":"用于解释肺腺癌演变的癌症时间估计。","authors":"Yourui Han, Bolin Chen, Jun Bian, Ruiming Kang, Xuequn Shang","doi":"10.1093/bib/bbae520","DOIUrl":null,"url":null,"abstract":"<p><p>The evolution of lung adenocarcinoma is accompanied by a multitude of gene mutations and dysfunctions, rendering its phenotypic state and evolutionary direction highly complex. To interpret the evolution of lung adenocarcinoma, various methods have been developed to elucidate the molecular pathogenesis and functional evolution processes. However, most of these methods are constrained by the absence of cancerous temporal information, and the challenges of heterogeneous characteristics. To handle these problems, in this study, a patient quasi-potential landscape method was proposed to estimate the cancerous time of phenotypic states' emergence during the evolutionary process. Subsequently, a total of 39 different oncogenetic paths were identified based on cancerous time and mutations, reflecting the molecular pathogenesis of the evolutionary process of lung adenocarcinoma. To interpret the evolution patterns of lung adenocarcinoma, three oncogenetic graphs were obtained as the common evolutionary patterns by merging the oncogenetic paths. Moreover, patients were evenly re-divided into early, middle, and late evolutionary stages according to cancerous time, and a feasible framework was developed to construct the functional evolution network of lung adenocarcinoma. A total of six significant functional evolution processes were identified from the functional evolution network based on the pathway enrichment analysis, which plays critical roles in understanding the development of lung adenocarcinoma.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483137/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cancerous time estimation for interpreting the evolution of lung adenocarcinoma.\",\"authors\":\"Yourui Han, Bolin Chen, Jun Bian, Ruiming Kang, Xuequn Shang\",\"doi\":\"10.1093/bib/bbae520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The evolution of lung adenocarcinoma is accompanied by a multitude of gene mutations and dysfunctions, rendering its phenotypic state and evolutionary direction highly complex. To interpret the evolution of lung adenocarcinoma, various methods have been developed to elucidate the molecular pathogenesis and functional evolution processes. However, most of these methods are constrained by the absence of cancerous temporal information, and the challenges of heterogeneous characteristics. To handle these problems, in this study, a patient quasi-potential landscape method was proposed to estimate the cancerous time of phenotypic states' emergence during the evolutionary process. Subsequently, a total of 39 different oncogenetic paths were identified based on cancerous time and mutations, reflecting the molecular pathogenesis of the evolutionary process of lung adenocarcinoma. To interpret the evolution patterns of lung adenocarcinoma, three oncogenetic graphs were obtained as the common evolutionary patterns by merging the oncogenetic paths. Moreover, patients were evenly re-divided into early, middle, and late evolutionary stages according to cancerous time, and a feasible framework was developed to construct the functional evolution network of lung adenocarcinoma. A total of six significant functional evolution processes were identified from the functional evolution network based on the pathway enrichment analysis, which plays critical roles in understanding the development of lung adenocarcinoma.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"25 6\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483137/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae520\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae520","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Cancerous time estimation for interpreting the evolution of lung adenocarcinoma.
The evolution of lung adenocarcinoma is accompanied by a multitude of gene mutations and dysfunctions, rendering its phenotypic state and evolutionary direction highly complex. To interpret the evolution of lung adenocarcinoma, various methods have been developed to elucidate the molecular pathogenesis and functional evolution processes. However, most of these methods are constrained by the absence of cancerous temporal information, and the challenges of heterogeneous characteristics. To handle these problems, in this study, a patient quasi-potential landscape method was proposed to estimate the cancerous time of phenotypic states' emergence during the evolutionary process. Subsequently, a total of 39 different oncogenetic paths were identified based on cancerous time and mutations, reflecting the molecular pathogenesis of the evolutionary process of lung adenocarcinoma. To interpret the evolution patterns of lung adenocarcinoma, three oncogenetic graphs were obtained as the common evolutionary patterns by merging the oncogenetic paths. Moreover, patients were evenly re-divided into early, middle, and late evolutionary stages according to cancerous time, and a feasible framework was developed to construct the functional evolution network of lung adenocarcinoma. A total of six significant functional evolution processes were identified from the functional evolution network based on the pathway enrichment analysis, which plays critical roles in understanding the development of lung adenocarcinoma.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.