{"title":"对针对生物液体、环境和发酵样品中他汀类药物开发的分析技术进行批判性分析。","authors":"Seenivasan Ayothiraman, Nithya Murugesan, Gautam Sethi","doi":"10.1080/07388551.2024.2412128","DOIUrl":null,"url":null,"abstract":"<p><p>Statins are the most prescribed drug for regulating the high cholesterol level in the blood, which can lead to severe complications, such as cardiovascular diseases and other health complications. A wide range of analytical techniques have been employed for the quantification of statins from various origins, including fermentation derived (lovastatin, pravastatin, and compactin), semi-synthetic (simvastatin), and synthetic (atorvastatin, rosuvastatin, and fluvastatin) routes. The presence of more than one structural form and structural analogue generated in the biosynthesis pathway, as well as reaction intermediates and macromolecules in the clinical sample, complicates the quantification of statins. Furthermore, significant concentrations of statins in environmental samples pose serious health and ecology hazards, and estimating statins in those diluted samples is extremely difficult. On the other hand, the: cost, accurate estimation of the desired one from other structural forms, sample complexity, time, limits of detection and quantification, were major criteria distinguishing the usability of each technique. As a result, the current manuscript focuses on analytical techniques such as molecular spectroscopy (normal and derivatives UV-Visible spectrophotometer), chromatography (TLC, HP-TLC, HPLC, GC, swing column, micellar, and supercritical fluid), mass spectroscopy (HPLC-MS/MS and GC-MS/MS), sequential flow injection, capillary electrophoresis, and cyclic voltammetry, as well as their: optimal operating conditions, limits of detection and quantification, advancements, and limitations. Furthermore, various online and offline sample preparations (precipitation, solid phase extraction, liquid-liquid extraction, and micellar extraction) have been highlighted as an essential pretreatment technique to avoid the interference caused by structural analogues and other macromolecules. The greener and more sustainable concepts used in analytical approaches for the quantification statins are also highlighted with current advancements.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-31"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical analysis of analytical techniques developed for statins in biological fluids, environmental and fermentation samples.\",\"authors\":\"Seenivasan Ayothiraman, Nithya Murugesan, Gautam Sethi\",\"doi\":\"10.1080/07388551.2024.2412128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Statins are the most prescribed drug for regulating the high cholesterol level in the blood, which can lead to severe complications, such as cardiovascular diseases and other health complications. A wide range of analytical techniques have been employed for the quantification of statins from various origins, including fermentation derived (lovastatin, pravastatin, and compactin), semi-synthetic (simvastatin), and synthetic (atorvastatin, rosuvastatin, and fluvastatin) routes. The presence of more than one structural form and structural analogue generated in the biosynthesis pathway, as well as reaction intermediates and macromolecules in the clinical sample, complicates the quantification of statins. Furthermore, significant concentrations of statins in environmental samples pose serious health and ecology hazards, and estimating statins in those diluted samples is extremely difficult. On the other hand, the: cost, accurate estimation of the desired one from other structural forms, sample complexity, time, limits of detection and quantification, were major criteria distinguishing the usability of each technique. As a result, the current manuscript focuses on analytical techniques such as molecular spectroscopy (normal and derivatives UV-Visible spectrophotometer), chromatography (TLC, HP-TLC, HPLC, GC, swing column, micellar, and supercritical fluid), mass spectroscopy (HPLC-MS/MS and GC-MS/MS), sequential flow injection, capillary electrophoresis, and cyclic voltammetry, as well as their: optimal operating conditions, limits of detection and quantification, advancements, and limitations. Furthermore, various online and offline sample preparations (precipitation, solid phase extraction, liquid-liquid extraction, and micellar extraction) have been highlighted as an essential pretreatment technique to avoid the interference caused by structural analogues and other macromolecules. The greener and more sustainable concepts used in analytical approaches for the quantification statins are also highlighted with current advancements.</p>\",\"PeriodicalId\":10752,\"journal\":{\"name\":\"Critical Reviews in Biotechnology\",\"volume\":\" \",\"pages\":\"1-31\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07388551.2024.2412128\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2024.2412128","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Critical analysis of analytical techniques developed for statins in biological fluids, environmental and fermentation samples.
Statins are the most prescribed drug for regulating the high cholesterol level in the blood, which can lead to severe complications, such as cardiovascular diseases and other health complications. A wide range of analytical techniques have been employed for the quantification of statins from various origins, including fermentation derived (lovastatin, pravastatin, and compactin), semi-synthetic (simvastatin), and synthetic (atorvastatin, rosuvastatin, and fluvastatin) routes. The presence of more than one structural form and structural analogue generated in the biosynthesis pathway, as well as reaction intermediates and macromolecules in the clinical sample, complicates the quantification of statins. Furthermore, significant concentrations of statins in environmental samples pose serious health and ecology hazards, and estimating statins in those diluted samples is extremely difficult. On the other hand, the: cost, accurate estimation of the desired one from other structural forms, sample complexity, time, limits of detection and quantification, were major criteria distinguishing the usability of each technique. As a result, the current manuscript focuses on analytical techniques such as molecular spectroscopy (normal and derivatives UV-Visible spectrophotometer), chromatography (TLC, HP-TLC, HPLC, GC, swing column, micellar, and supercritical fluid), mass spectroscopy (HPLC-MS/MS and GC-MS/MS), sequential flow injection, capillary electrophoresis, and cyclic voltammetry, as well as their: optimal operating conditions, limits of detection and quantification, advancements, and limitations. Furthermore, various online and offline sample preparations (precipitation, solid phase extraction, liquid-liquid extraction, and micellar extraction) have been highlighted as an essential pretreatment technique to avoid the interference caused by structural analogues and other macromolecules. The greener and more sustainable concepts used in analytical approaches for the quantification statins are also highlighted with current advancements.
期刊介绍:
Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.