Michael R Pinsky, Hernando Gomez, Anthony Wertz, Jim Leonard, Artur Dubrawski, Ronald Poropatich
{"title":"在失血性休克动物模型中评估生理驱动的闭环复苏算法","authors":"Michael R Pinsky, Hernando Gomez, Anthony Wertz, Jim Leonard, Artur Dubrawski, Ronald Poropatich","doi":"10.1097/CCM.0000000000006297","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Appropriate resuscitation from hemorrhagic shock is critical to restore tissue perfusion and to avoid over-resuscitation. The objective of this study was to test the ability of a closed-loop diagnosis and resuscitation algorithm called resuscitation from shock using functional hemodynamic monitoring using invasive monitoring (ReFit1) and minimally invasive monitoring (ReFit2) to identify, treat, and stabilize a porcine model of severe hemorrhagic shock.</p><p><strong>Design: </strong>We created a ReFit algorithm using dynamic hemodynamic parameters of pulse pressure variation (PPV), stroke volume variation (SVV), dynamic arterial elastance (Eadyn = PPV/SVV), driven by mean arterial pressure (MAP), mixed venous oxygen saturation, and heart rate targets to define the need for fluids, vasopressors, and inotropes.</p><p><strong>Setting: </strong>University-based animal laboratory.</p><p><strong>Subjects: </strong>Twenty-seven female pigs.</p><p><strong>Interventions: </strong>Anesthetized, intubated, and ventilated (8 mL/kg) pigs were bled at 10 mL/min until a MAP of less than 40 mm Hg, held for 30 minutes, then resuscitated. The ReFit algorithm used the above dynamic parameters to drive computer-controlled infusion pumps to deliver blood, lactated Ringer's solution, norepinephrine, and in ReFit1 dobutamine. In four animals, after initial resuscitation from hemorrhagic shock, the ability of the ReFit1 algorithm to treat acute air embolism-induced pulmonary hypertension and right heart failure was also tested.</p><p><strong>Main results: </strong>In 10 ReFit1 and 17 ReFit2 animals, the time to stabilization from shock was not dissimilar to open controlled resuscitation performed by an expert physician (52 ± 12, 50 ± 13, and 60 ± 15 min, respectively) with similar amounts of fluids and norepinephrine needed. In four ReFit1 animals after initial stabilization, the algorithm successfully resuscitated the animals after inducing an acute air embolism right heart failure, with all animals recovering stability within 30 minutes.</p><p><strong>Conclusions: </strong>Our physiologically based functional hemodynamic monitoring-centered closed-loop resuscitation system can effectively diagnose and treat cardiovascular shock due to hemorrhage and air embolism.</p>","PeriodicalId":10765,"journal":{"name":"Critical Care Medicine","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of a Physiologic-Driven Closed-Loop Resuscitation Algorithm in an Animal Model of Hemorrhagic Shock.\",\"authors\":\"Michael R Pinsky, Hernando Gomez, Anthony Wertz, Jim Leonard, Artur Dubrawski, Ronald Poropatich\",\"doi\":\"10.1097/CCM.0000000000006297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Appropriate resuscitation from hemorrhagic shock is critical to restore tissue perfusion and to avoid over-resuscitation. The objective of this study was to test the ability of a closed-loop diagnosis and resuscitation algorithm called resuscitation from shock using functional hemodynamic monitoring using invasive monitoring (ReFit1) and minimally invasive monitoring (ReFit2) to identify, treat, and stabilize a porcine model of severe hemorrhagic shock.</p><p><strong>Design: </strong>We created a ReFit algorithm using dynamic hemodynamic parameters of pulse pressure variation (PPV), stroke volume variation (SVV), dynamic arterial elastance (Eadyn = PPV/SVV), driven by mean arterial pressure (MAP), mixed venous oxygen saturation, and heart rate targets to define the need for fluids, vasopressors, and inotropes.</p><p><strong>Setting: </strong>University-based animal laboratory.</p><p><strong>Subjects: </strong>Twenty-seven female pigs.</p><p><strong>Interventions: </strong>Anesthetized, intubated, and ventilated (8 mL/kg) pigs were bled at 10 mL/min until a MAP of less than 40 mm Hg, held for 30 minutes, then resuscitated. The ReFit algorithm used the above dynamic parameters to drive computer-controlled infusion pumps to deliver blood, lactated Ringer's solution, norepinephrine, and in ReFit1 dobutamine. In four animals, after initial resuscitation from hemorrhagic shock, the ability of the ReFit1 algorithm to treat acute air embolism-induced pulmonary hypertension and right heart failure was also tested.</p><p><strong>Main results: </strong>In 10 ReFit1 and 17 ReFit2 animals, the time to stabilization from shock was not dissimilar to open controlled resuscitation performed by an expert physician (52 ± 12, 50 ± 13, and 60 ± 15 min, respectively) with similar amounts of fluids and norepinephrine needed. In four ReFit1 animals after initial stabilization, the algorithm successfully resuscitated the animals after inducing an acute air embolism right heart failure, with all animals recovering stability within 30 minutes.</p><p><strong>Conclusions: </strong>Our physiologically based functional hemodynamic monitoring-centered closed-loop resuscitation system can effectively diagnose and treat cardiovascular shock due to hemorrhage and air embolism.</p>\",\"PeriodicalId\":10765,\"journal\":{\"name\":\"Critical Care Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Care Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/CCM.0000000000006297\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Care Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CCM.0000000000006297","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
Evaluation of a Physiologic-Driven Closed-Loop Resuscitation Algorithm in an Animal Model of Hemorrhagic Shock.
Objectives: Appropriate resuscitation from hemorrhagic shock is critical to restore tissue perfusion and to avoid over-resuscitation. The objective of this study was to test the ability of a closed-loop diagnosis and resuscitation algorithm called resuscitation from shock using functional hemodynamic monitoring using invasive monitoring (ReFit1) and minimally invasive monitoring (ReFit2) to identify, treat, and stabilize a porcine model of severe hemorrhagic shock.
Design: We created a ReFit algorithm using dynamic hemodynamic parameters of pulse pressure variation (PPV), stroke volume variation (SVV), dynamic arterial elastance (Eadyn = PPV/SVV), driven by mean arterial pressure (MAP), mixed venous oxygen saturation, and heart rate targets to define the need for fluids, vasopressors, and inotropes.
Setting: University-based animal laboratory.
Subjects: Twenty-seven female pigs.
Interventions: Anesthetized, intubated, and ventilated (8 mL/kg) pigs were bled at 10 mL/min until a MAP of less than 40 mm Hg, held for 30 minutes, then resuscitated. The ReFit algorithm used the above dynamic parameters to drive computer-controlled infusion pumps to deliver blood, lactated Ringer's solution, norepinephrine, and in ReFit1 dobutamine. In four animals, after initial resuscitation from hemorrhagic shock, the ability of the ReFit1 algorithm to treat acute air embolism-induced pulmonary hypertension and right heart failure was also tested.
Main results: In 10 ReFit1 and 17 ReFit2 animals, the time to stabilization from shock was not dissimilar to open controlled resuscitation performed by an expert physician (52 ± 12, 50 ± 13, and 60 ± 15 min, respectively) with similar amounts of fluids and norepinephrine needed. In four ReFit1 animals after initial stabilization, the algorithm successfully resuscitated the animals after inducing an acute air embolism right heart failure, with all animals recovering stability within 30 minutes.
Conclusions: Our physiologically based functional hemodynamic monitoring-centered closed-loop resuscitation system can effectively diagnose and treat cardiovascular shock due to hemorrhage and air embolism.
期刊介绍:
Critical Care Medicine is the premier peer-reviewed, scientific publication in critical care medicine. Directed to those specialists who treat patients in the ICU and CCU, including chest physicians, surgeons, pediatricians, pharmacists/pharmacologists, anesthesiologists, critical care nurses, and other healthcare professionals, Critical Care Medicine covers all aspects of acute and emergency care for the critically ill or injured patient.
Each issue presents critical care practitioners with clinical breakthroughs that lead to better patient care, the latest news on promising research, and advances in equipment and techniques.