{"title":"中国成年人接触多种金属与骨矿物质密度之间的关系","authors":"Gaojie Fan, Qing Liu, Mingyang Wu, Jianing Bi, Xiya Qin, Qing Fang, Surong Mei, Zhengce Wan, Yongman Lv, Lulu Song, Youjie Wang","doi":"10.1007/s10653-024-02261-3","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies about metal exposures and bone mineral density (BMD) have mainly focused on individual metals. The objective of this study was to explore the association of single and multiple metal exposures with BMD among Chinese adults. We recruited 2922 participants from Tongji Hospital in Wuhan, China. The urinary concentrations of 21 metals were measured by the inductively coupled plasma mass spectrometer. BMD was measured using dual-energy X-ray absorptiometry. We applied linear regression and Bayesian kernel machine regression (BKMR) to examine the association of single and multiple metal exposure with BMD, respectively. The linear regression model showed that cadmium (Cd) and strontium (Sr) were associated with lower BMD (all P-trend < 0.05). Compared with the lowest quantiles, the β (95% CI) of BMD in the highest quartile of Cd and Sr was - 0.032 (- 0.049, - 0.016) and - 0.033 (- 0.049, - 0.018), respectively. The BKMR results showed that co-exposure to 21 metals was negatively associated with BMD among the total participants and males. Our study suggested that exposure to multiple metals was negatively associated with BMD, particularly among males. More prospective studies are needed to identify these associations and reveal the underlying mechanisms.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 11","pages":"475"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association between multiple metal exposure and bone mineral density among Chinese adults.\",\"authors\":\"Gaojie Fan, Qing Liu, Mingyang Wu, Jianing Bi, Xiya Qin, Qing Fang, Surong Mei, Zhengce Wan, Yongman Lv, Lulu Song, Youjie Wang\",\"doi\":\"10.1007/s10653-024-02261-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previous studies about metal exposures and bone mineral density (BMD) have mainly focused on individual metals. The objective of this study was to explore the association of single and multiple metal exposures with BMD among Chinese adults. We recruited 2922 participants from Tongji Hospital in Wuhan, China. The urinary concentrations of 21 metals were measured by the inductively coupled plasma mass spectrometer. BMD was measured using dual-energy X-ray absorptiometry. We applied linear regression and Bayesian kernel machine regression (BKMR) to examine the association of single and multiple metal exposure with BMD, respectively. The linear regression model showed that cadmium (Cd) and strontium (Sr) were associated with lower BMD (all P-trend < 0.05). Compared with the lowest quantiles, the β (95% CI) of BMD in the highest quartile of Cd and Sr was - 0.032 (- 0.049, - 0.016) and - 0.033 (- 0.049, - 0.018), respectively. The BKMR results showed that co-exposure to 21 metals was negatively associated with BMD among the total participants and males. Our study suggested that exposure to multiple metals was negatively associated with BMD, particularly among males. More prospective studies are needed to identify these associations and reveal the underlying mechanisms.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"46 11\",\"pages\":\"475\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-024-02261-3\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02261-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Association between multiple metal exposure and bone mineral density among Chinese adults.
Previous studies about metal exposures and bone mineral density (BMD) have mainly focused on individual metals. The objective of this study was to explore the association of single and multiple metal exposures with BMD among Chinese adults. We recruited 2922 participants from Tongji Hospital in Wuhan, China. The urinary concentrations of 21 metals were measured by the inductively coupled plasma mass spectrometer. BMD was measured using dual-energy X-ray absorptiometry. We applied linear regression and Bayesian kernel machine regression (BKMR) to examine the association of single and multiple metal exposure with BMD, respectively. The linear regression model showed that cadmium (Cd) and strontium (Sr) were associated with lower BMD (all P-trend < 0.05). Compared with the lowest quantiles, the β (95% CI) of BMD in the highest quartile of Cd and Sr was - 0.032 (- 0.049, - 0.016) and - 0.033 (- 0.049, - 0.018), respectively. The BKMR results showed that co-exposure to 21 metals was negatively associated with BMD among the total participants and males. Our study suggested that exposure to multiple metals was negatively associated with BMD, particularly among males. More prospective studies are needed to identify these associations and reveal the underlying mechanisms.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.