人类肺癌组织微生物组的物种多样性和网络多样性

IF 2.2 4区 生物学 Q3 MICROBIOLOGY Fems Microbiology Letters Pub Date : 2024-01-09 DOI:10.1093/femsle/fnae087
Yuting Qiao, Jiandong Mei, Zhanshan Sam Ma
{"title":"人类肺癌组织微生物组的物种多样性和网络多样性","authors":"Yuting Qiao, Jiandong Mei, Zhanshan Sam Ma","doi":"10.1093/femsle/fnae087","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the relationship between microbial diversity and disease status in human lung cancer tissue microbiomes, using a sample size of 1212. Analysis divided the data into primary tumour (PT) and normal tissue (NT) categories. Differences in microbial diversity between PT and NT were significant in 57% of comparisons, although dataset dependence was a factor in the diversity levels. Shared species analysis (SSA) indicated no significant differences between PT and NT in over 90% of comparisons. Network diversity assessments revealed significant differences between NT and PT regarding species relative abundances and network link abundances for q = 0-3. Additionally, significant variations were found between NT and lung squamous cell carcinoma (LUSC) at q = 0. in network link probabilities, illustrating the diversity in species interactions. Our findings suggest a stable overall microbiome diversity and composition in lung cancer patients' lung tissues despite patients with diagnosed lung tumours, indicating modified microbial interactions within the tumour. These results highlight an association between altered microbiome interaction patterns and lung tumours, offering new insights into the ecological dynamics of lung cancer microbiomes.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Species diversity and network diversity in the human lung cancer tissue microbiomes.\",\"authors\":\"Yuting Qiao, Jiandong Mei, Zhanshan Sam Ma\",\"doi\":\"10.1093/femsle/fnae087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explores the relationship between microbial diversity and disease status in human lung cancer tissue microbiomes, using a sample size of 1212. Analysis divided the data into primary tumour (PT) and normal tissue (NT) categories. Differences in microbial diversity between PT and NT were significant in 57% of comparisons, although dataset dependence was a factor in the diversity levels. Shared species analysis (SSA) indicated no significant differences between PT and NT in over 90% of comparisons. Network diversity assessments revealed significant differences between NT and PT regarding species relative abundances and network link abundances for q = 0-3. Additionally, significant variations were found between NT and lung squamous cell carcinoma (LUSC) at q = 0. in network link probabilities, illustrating the diversity in species interactions. Our findings suggest a stable overall microbiome diversity and composition in lung cancer patients' lung tissues despite patients with diagnosed lung tumours, indicating modified microbial interactions within the tumour. These results highlight an association between altered microbiome interaction patterns and lung tumours, offering new insights into the ecological dynamics of lung cancer microbiomes.</p>\",\"PeriodicalId\":12214,\"journal\":{\"name\":\"Fems Microbiology Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fems Microbiology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsle/fnae087\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae087","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用 1,212 个样本探讨了人类肺癌组织微生物组中微生物多样性与疾病状态之间的关系。分析将数据分为原发性肿瘤(PT)和正常组织(NT)两类。在57%的比较中,PT和NT之间微生物多样性的差异显著,尽管数据集依赖性是影响多样性水平的一个因素。共有物种分析(SSA)表明,在超过 90% 的比较中,PT 和 NT 之间没有显著差异。网络多样性评估显示,在 q=0-3 条件下,NT 与 PT 在物种相对丰度和网络链接丰度方面存在显著差异。此外,在 q=0 时,NT 和 LUSC 在网络链接概率方面存在显著差异,这说明了物种相互作用的多样性。我们的研究结果表明,尽管肺癌患者已确诊为肺部肿瘤,但其肺部组织中微生物组的多样性和组成总体上是稳定的,这表明肿瘤内微生物的相互作用发生了改变。这些结果突显了微生物组相互作用模式的改变与肺部肿瘤之间的关联,为肺癌微生物组的生态动态提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Species diversity and network diversity in the human lung cancer tissue microbiomes.

This study explores the relationship between microbial diversity and disease status in human lung cancer tissue microbiomes, using a sample size of 1212. Analysis divided the data into primary tumour (PT) and normal tissue (NT) categories. Differences in microbial diversity between PT and NT were significant in 57% of comparisons, although dataset dependence was a factor in the diversity levels. Shared species analysis (SSA) indicated no significant differences between PT and NT in over 90% of comparisons. Network diversity assessments revealed significant differences between NT and PT regarding species relative abundances and network link abundances for q = 0-3. Additionally, significant variations were found between NT and lung squamous cell carcinoma (LUSC) at q = 0. in network link probabilities, illustrating the diversity in species interactions. Our findings suggest a stable overall microbiome diversity and composition in lung cancer patients' lung tissues despite patients with diagnosed lung tumours, indicating modified microbial interactions within the tumour. These results highlight an association between altered microbiome interaction patterns and lung tumours, offering new insights into the ecological dynamics of lung cancer microbiomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fems Microbiology Letters
Fems Microbiology Letters 生物-微生物学
CiteScore
4.30
自引率
0.00%
发文量
112
审稿时长
1.9 months
期刊介绍: FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered. 2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020) Ranking: 98/135 (Microbiology) The journal is divided into eight Sections: Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies) Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens) Biotechnology and Synthetic Biology Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses) Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies) Virology (viruses infecting any organism, including Bacteria and Archaea) Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature) Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology) If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.
期刊最新文献
Disruption of the pkac2 gene in Pleurotus ostreatus alters cell wall structures and enables mycelial dispersion in liquid culture. Temporal control of Staphylococcus aureus intracellular pH by sodium and potassium. DIVULSUPERBAC: an outreach project to raise awareness of antimicrobial resistance. Genome-based analysis of biosynthetic potential from antimycotic Streptomyces rochei strain A144. Menaquinone production in genetically engineered E. coli.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1