对扩张脑毛细血管血脑屏障上的假定货物受体进行纳米级体外测绘。

IF 5.9 1区 医学 Q1 NEUROSCIENCES Fluids and Barriers of the CNS Pub Date : 2024-10-14 DOI:10.1186/s12987-024-00585-x
Mikkel Roland Holst, Mette Richner, Pernille Olsgaard Arenshøj, Parvez Alam, Kathrine Hyldig, Morten Schallburg Nielsen
{"title":"对扩张脑毛细血管血脑屏障上的假定货物受体进行纳米级体外测绘。","authors":"Mikkel Roland Holst, Mette Richner, Pernille Olsgaard Arenshøj, Parvez Alam, Kathrine Hyldig, Morten Schallburg Nielsen","doi":"10.1186/s12987-024-00585-x","DOIUrl":null,"url":null,"abstract":"<p><p>Receptor mediated transport of therapeutic antibodies through the blood-brain barrier (BBB) give promise for drug delivery to alleviate brain diseases. We developed a low-cost method to obtain nanoscale localization data of putative cargo receptors. We combine existing ex vivo isolation methods with expansion microscopy (ExM) to analyze receptor localizations in brain microcapillaries. Using this approach, we show how to analyze receptor localizations in endothelial cells of brain microcapillaries in relation to the abluminal marker collagen IV. By choosing the thinnest capillaries, microcapillaries for analysis, we ensure the validity of collagen IV as an abluminal marker. With this tool, we confirm transferrin receptors as well as sortilin to be both luminally and abluminally localized. Furthermore, we identify basigin to be an abluminal receptor. Our methodology can be adapted to analyze different types of isolated brain capillaries and we anticipate that this approach will be very useful for the research community to gain new insight into cargo receptor trafficking in the slim brain endothelial cells to elucidate novel paths for future drug design.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"80"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475543/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ex vivo nanoscale abluminal mapping of putative cargo receptors at the blood-brain barrier of expanded brain capillaries.\",\"authors\":\"Mikkel Roland Holst, Mette Richner, Pernille Olsgaard Arenshøj, Parvez Alam, Kathrine Hyldig, Morten Schallburg Nielsen\",\"doi\":\"10.1186/s12987-024-00585-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Receptor mediated transport of therapeutic antibodies through the blood-brain barrier (BBB) give promise for drug delivery to alleviate brain diseases. We developed a low-cost method to obtain nanoscale localization data of putative cargo receptors. We combine existing ex vivo isolation methods with expansion microscopy (ExM) to analyze receptor localizations in brain microcapillaries. Using this approach, we show how to analyze receptor localizations in endothelial cells of brain microcapillaries in relation to the abluminal marker collagen IV. By choosing the thinnest capillaries, microcapillaries for analysis, we ensure the validity of collagen IV as an abluminal marker. With this tool, we confirm transferrin receptors as well as sortilin to be both luminally and abluminally localized. Furthermore, we identify basigin to be an abluminal receptor. Our methodology can be adapted to analyze different types of isolated brain capillaries and we anticipate that this approach will be very useful for the research community to gain new insight into cargo receptor trafficking in the slim brain endothelial cells to elucidate novel paths for future drug design.</p>\",\"PeriodicalId\":12321,\"journal\":{\"name\":\"Fluids and Barriers of the CNS\",\"volume\":\"21 1\",\"pages\":\"80\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475543/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluids and Barriers of the CNS\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12987-024-00585-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-024-00585-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

受体介导的治疗性抗体通过血脑屏障(BBB)的运输为缓解脑部疾病的药物输送带来了希望。我们开发了一种低成本方法来获取假定货物受体的纳米级定位数据。我们将现有的体外分离方法与膨胀显微镜(ExM)相结合,分析了大脑微毛细血管中的受体定位。利用这种方法,我们展示了如何分析脑微毛细血管内皮细胞中受体定位与腔内标记物胶原蛋白 IV 的关系。通过选择最细的毛细血管--微毛细血管进行分析,我们确保了胶原蛋白 IV 作为腔内标志物的有效性。通过这一工具,我们确认了转铁蛋白受体和索氏蛋白在腔内和腔外的定位。此外,我们还发现 Basigin 也是一种腔内受体。我们的方法可用于分析不同类型的离体脑毛细血管,我们预计这种方法将对研究界非常有用,有助于深入了解纤细脑内皮细胞中的货物受体贩运,从而为未来的药物设计提供新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ex vivo nanoscale abluminal mapping of putative cargo receptors at the blood-brain barrier of expanded brain capillaries.

Receptor mediated transport of therapeutic antibodies through the blood-brain barrier (BBB) give promise for drug delivery to alleviate brain diseases. We developed a low-cost method to obtain nanoscale localization data of putative cargo receptors. We combine existing ex vivo isolation methods with expansion microscopy (ExM) to analyze receptor localizations in brain microcapillaries. Using this approach, we show how to analyze receptor localizations in endothelial cells of brain microcapillaries in relation to the abluminal marker collagen IV. By choosing the thinnest capillaries, microcapillaries for analysis, we ensure the validity of collagen IV as an abluminal marker. With this tool, we confirm transferrin receptors as well as sortilin to be both luminally and abluminally localized. Furthermore, we identify basigin to be an abluminal receptor. Our methodology can be adapted to analyze different types of isolated brain capillaries and we anticipate that this approach will be very useful for the research community to gain new insight into cargo receptor trafficking in the slim brain endothelial cells to elucidate novel paths for future drug design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluids and Barriers of the CNS
Fluids and Barriers of the CNS Neuroscience-Developmental Neuroscience
CiteScore
10.70
自引率
8.20%
发文量
94
审稿时长
14 weeks
期刊介绍: "Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease. At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).
期刊最新文献
Role of the transcription factor NRF2 in maintaining the integrity of the Blood-Brain Barrier. Mutated LRRK2 induces a reactive phenotype and alters migration in human iPSC-derived pericyte-like cells. C1-inhibitor to prevent intracerebral hemorrhage-related secondary brain injury. Exploring dysfunctional barrier phenotypes associated with glaucoma using a human pluripotent stem cell-based model of the neurovascular unit. Blood-brain barrier permeability increases with the differentiation of glioblastoma cells in vitro.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1