{"title":"同域和异域的森蝶物种 Z 染色体进化速度加快。","authors":"Manuela López Villavicencio, Joséphine Ledamoisel, Riccardo Poloni, Céline Lopez-Roques, Vincent Debat, Violaine Llaurens","doi":"10.1093/gbe/evae227","DOIUrl":null,"url":null,"abstract":"<p><p>Divergent evolution of genomes among closely related species is shaped by both neutral processes and ecological forces, such as local adaptation and reinforcement. These factors can drive accelerated evolution of sex chromosomes relative to autosomes. Comparative genomic analyses between allopatric and sympatric species with overlapping or divergent ecological niches offer insights into reinforcement and ecological specialization on genome evolution. In the butterfly genus Morpho, several species coexist in sympatry, with specialization across forest strata and temporal niches. We analyzed the genomes of eight Morpho species, along with previously published genomes of three others, to compare chromosomal rearrangements and signs of positive selection in the Z chromosome vs. autosomes. We found extensive chromosomal rearrangements in Z chromosome, particularly in sympatric species with similar ecological niches, suggesting a role for inversions in restricting gene flow at a postzygotic level. Z-linked genes also exhibited significantly higher dN/dS ratios than autosomal genes across the genus, with pronounced differences in closely related species living in sympatry. Additionally, we examined the evolution of eight circadian clock genes, detecting positive selection in Period, located on the Z chromosome. Our findings suggest that the Z chromosome evolves more rapidly than autosomes, particularly among closely related species, raising questions about its role in prezygotic and postzygotic isolation mechanisms.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increased Evolutionary Rate in the Z chromosome of Sympatric and Allopatric Species of Morpho Butterflies.\",\"authors\":\"Manuela López Villavicencio, Joséphine Ledamoisel, Riccardo Poloni, Céline Lopez-Roques, Vincent Debat, Violaine Llaurens\",\"doi\":\"10.1093/gbe/evae227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Divergent evolution of genomes among closely related species is shaped by both neutral processes and ecological forces, such as local adaptation and reinforcement. These factors can drive accelerated evolution of sex chromosomes relative to autosomes. Comparative genomic analyses between allopatric and sympatric species with overlapping or divergent ecological niches offer insights into reinforcement and ecological specialization on genome evolution. In the butterfly genus Morpho, several species coexist in sympatry, with specialization across forest strata and temporal niches. We analyzed the genomes of eight Morpho species, along with previously published genomes of three others, to compare chromosomal rearrangements and signs of positive selection in the Z chromosome vs. autosomes. We found extensive chromosomal rearrangements in Z chromosome, particularly in sympatric species with similar ecological niches, suggesting a role for inversions in restricting gene flow at a postzygotic level. Z-linked genes also exhibited significantly higher dN/dS ratios than autosomal genes across the genus, with pronounced differences in closely related species living in sympatry. Additionally, we examined the evolution of eight circadian clock genes, detecting positive selection in Period, located on the Z chromosome. Our findings suggest that the Z chromosome evolves more rapidly than autosomes, particularly among closely related species, raising questions about its role in prezygotic and postzygotic isolation mechanisms.</p>\",\"PeriodicalId\":12779,\"journal\":{\"name\":\"Genome Biology and Evolution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gbe/evae227\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae227","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
近亲物种之间基因组的差异进化既受中性过程的影响,也受生态力量(如局部适应和强化)的影响。相对于常染色体而言,这些因素会加速性染色体的进化。通过对生态位点重叠或不同的同域物种和共域物种进行基因组比较分析,可以深入了解强化和生态特化对基因组进化的影响。在蝴蝶属(Morpho)中,有多个物种共生,在不同的森林地层和时间壁龛中具有专一性。我们分析了八个森蝶物种的基因组,以及之前发表的其他三个物种的基因组,比较了染色体重排和 Z 染色体与常染色体的正选择迹象。我们发现 Z 染色体中存在广泛的染色体重排,尤其是在生态位相近的同域物种中,这表明倒位在限制基因后代流动方面发挥了作用。在全属中,Z连锁基因的dN/dS比值也明显高于常染色体基因,在共生的近缘物种中差异明显。此外,我们还研究了位于 Z 染色体上的 8 个昼夜节律时钟基因的进化过程,并在 Period 中发现了正选择。我们的研究结果表明,Z 染色体比常染色体进化得更快,尤其是在近亲物种之间,这就提出了Z 染色体在同种异体隔离机制中的作用问题。
Increased Evolutionary Rate in the Z chromosome of Sympatric and Allopatric Species of Morpho Butterflies.
Divergent evolution of genomes among closely related species is shaped by both neutral processes and ecological forces, such as local adaptation and reinforcement. These factors can drive accelerated evolution of sex chromosomes relative to autosomes. Comparative genomic analyses between allopatric and sympatric species with overlapping or divergent ecological niches offer insights into reinforcement and ecological specialization on genome evolution. In the butterfly genus Morpho, several species coexist in sympatry, with specialization across forest strata and temporal niches. We analyzed the genomes of eight Morpho species, along with previously published genomes of three others, to compare chromosomal rearrangements and signs of positive selection in the Z chromosome vs. autosomes. We found extensive chromosomal rearrangements in Z chromosome, particularly in sympatric species with similar ecological niches, suggesting a role for inversions in restricting gene flow at a postzygotic level. Z-linked genes also exhibited significantly higher dN/dS ratios than autosomal genes across the genus, with pronounced differences in closely related species living in sympatry. Additionally, we examined the evolution of eight circadian clock genes, detecting positive selection in Period, located on the Z chromosome. Our findings suggest that the Z chromosome evolves more rapidly than autosomes, particularly among closely related species, raising questions about its role in prezygotic and postzygotic isolation mechanisms.
期刊介绍:
About the journal
Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.