Tanmay Jain, Hunter Danesi, Anne Lucas, Benita Dair, Katherine Vorvolakos
{"title":"超高分子量聚乙烯 (UHMWPE) 的加速体外氧化降解测试。","authors":"Tanmay Jain, Hunter Danesi, Anne Lucas, Benita Dair, Katherine Vorvolakos","doi":"10.1002/jbm.b.35495","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Nonabsorbable polymers used in biomedical applications are assumed to be permanently stable based on short-term testing, but some may be susceptible to oxidative degradation over several years of implantation. Traditional in vitro oxidative degradation screenings employ hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) solutions. However, the inherent instability of H<sub>2</sub>O<sub>2</sub> can compromise the consistency of oxidative conditions, especially over extended periods and at elevated temperatures used for accelerated testing. In this study, an automated reactive accelerated aging (aRAA) system, which integrates an electrochemical detection method and a feedback loop, was utilized to ensure precise control of H<sub>2</sub>O<sub>2</sub> concentrations during polymer oxidative degradation testing. The reproducibility of the aRAA system was evaluated by comparing four identical setups. Its efficacy as an oxidation challenge was demonstrated on (i) medical-grade vitamin E (VE) blended ultra-high molecular weight polyethylene (UHMWPE) and (ii) highly crosslinked (HXL) UHMWPE as model materials. The aRAA-aged VE-UHMWPE and HXL-UHMWPE samples were also compared against samples aged via an existing accelerated aging standard, ASTM F2003-02(2022). Samples were analyzed using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy to calculate their oxidation index per ASTM F2102-17. We observed that the aRAA system was more effective in oxidizing VE-UHMWPE and HXL-UHMWPE than the traditional ASTM F2003-02(2022) method. By providing a standardized and reliable approach to assess polymer oxidative degradation, the aRAA system could enhance the accuracy of long-term stability predictions for nonresorbable polymers in medical devices.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated In Vitro Oxidative Degradation Testing of Ultra-High Molecular Weight Polyethylene (UHMWPE)\",\"authors\":\"Tanmay Jain, Hunter Danesi, Anne Lucas, Benita Dair, Katherine Vorvolakos\",\"doi\":\"10.1002/jbm.b.35495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Nonabsorbable polymers used in biomedical applications are assumed to be permanently stable based on short-term testing, but some may be susceptible to oxidative degradation over several years of implantation. Traditional in vitro oxidative degradation screenings employ hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) solutions. However, the inherent instability of H<sub>2</sub>O<sub>2</sub> can compromise the consistency of oxidative conditions, especially over extended periods and at elevated temperatures used for accelerated testing. In this study, an automated reactive accelerated aging (aRAA) system, which integrates an electrochemical detection method and a feedback loop, was utilized to ensure precise control of H<sub>2</sub>O<sub>2</sub> concentrations during polymer oxidative degradation testing. The reproducibility of the aRAA system was evaluated by comparing four identical setups. Its efficacy as an oxidation challenge was demonstrated on (i) medical-grade vitamin E (VE) blended ultra-high molecular weight polyethylene (UHMWPE) and (ii) highly crosslinked (HXL) UHMWPE as model materials. The aRAA-aged VE-UHMWPE and HXL-UHMWPE samples were also compared against samples aged via an existing accelerated aging standard, ASTM F2003-02(2022). Samples were analyzed using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy to calculate their oxidation index per ASTM F2102-17. We observed that the aRAA system was more effective in oxidizing VE-UHMWPE and HXL-UHMWPE than the traditional ASTM F2003-02(2022) method. By providing a standardized and reliable approach to assess polymer oxidative degradation, the aRAA system could enhance the accuracy of long-term stability predictions for nonresorbable polymers in medical devices.</p>\\n </div>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35495\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35495","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Accelerated In Vitro Oxidative Degradation Testing of Ultra-High Molecular Weight Polyethylene (UHMWPE)
Nonabsorbable polymers used in biomedical applications are assumed to be permanently stable based on short-term testing, but some may be susceptible to oxidative degradation over several years of implantation. Traditional in vitro oxidative degradation screenings employ hydrogen peroxide (H2O2) solutions. However, the inherent instability of H2O2 can compromise the consistency of oxidative conditions, especially over extended periods and at elevated temperatures used for accelerated testing. In this study, an automated reactive accelerated aging (aRAA) system, which integrates an electrochemical detection method and a feedback loop, was utilized to ensure precise control of H2O2 concentrations during polymer oxidative degradation testing. The reproducibility of the aRAA system was evaluated by comparing four identical setups. Its efficacy as an oxidation challenge was demonstrated on (i) medical-grade vitamin E (VE) blended ultra-high molecular weight polyethylene (UHMWPE) and (ii) highly crosslinked (HXL) UHMWPE as model materials. The aRAA-aged VE-UHMWPE and HXL-UHMWPE samples were also compared against samples aged via an existing accelerated aging standard, ASTM F2003-02(2022). Samples were analyzed using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy to calculate their oxidation index per ASTM F2102-17. We observed that the aRAA system was more effective in oxidizing VE-UHMWPE and HXL-UHMWPE than the traditional ASTM F2003-02(2022) method. By providing a standardized and reliable approach to assess polymer oxidative degradation, the aRAA system could enhance the accuracy of long-term stability predictions for nonresorbable polymers in medical devices.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.