MECOM Locus 经典转录本异构体影响卵巢癌的肿瘤免疫微环境和不同靶点。

IF 3.8 3区 医学 Q1 REPRODUCTIVE BIOLOGY Journal of Ovarian Research Pub Date : 2024-10-19 DOI:10.1186/s13048-024-01522-0
Ning Lan, Shuheng Bai, Min Chen, Xuan Wang, Zhaode Feng, Ying Gao, Beina Hui, Wen Ma, Xiangxiang Zhang, Fengyuan Hu, Wanyi Liu, Wenyang Li, Fang Wu, Juan Ren
{"title":"MECOM Locus 经典转录本异构体影响卵巢癌的肿瘤免疫微环境和不同靶点。","authors":"Ning Lan, Shuheng Bai, Min Chen, Xuan Wang, Zhaode Feng, Ying Gao, Beina Hui, Wen Ma, Xiangxiang Zhang, Fengyuan Hu, Wanyi Liu, Wenyang Li, Fang Wu, Juan Ren","doi":"10.1186/s13048-024-01522-0","DOIUrl":null,"url":null,"abstract":"<p><p>The MECOM locus is a gene frequently amplified in high-grade serous ovarian carcinoma (HGSOC). Nevertheless, the body of research examining the associations among MECOM transcripts, patient prognosis, and their role in modulating the tumor immune microenvironment (TIME) remains sparse, particularly in large cohorts. This study assessed the expression of MECOM transcripts in 352 HGSOC patients and 88 normal ovarian tissues from the combined GTEx/TCGA database. Using resources such as the UCSC Genome Browser, Ensembl, and NextProt, two transcripts corresponding to classical protein isoforms from MECOM were identified. Cox proportional hazards regression analysis, Kaplan-Meier survival curves, and a comprehensive TIME evaluation algorithm were employed to elucidate the connections between the expression levels of these transcripts and both patient prognosis and TIME status. Chromatin Immunoprecipitation sequencing (ChIP-seq) data for the two protein isoforms, as well as RNA sequencing data post-targeted silencing, were analyzed to identify potential regulatory targets of the different transcription factors. Elevated expression of the MECOM isoform transcripts was correlated with poorer survival in HGSOC patients, potentially through the modulation of cancer-associated fibroblasts (CAFs) and immunosuppressive cell populations. In contrast, higher levels of EVI1 isoform transcripts were linked to enhanced survival, possibly due to the regulation of CD8<sup>+</sup> T cells, macrophages, and a reduction in the expression of JUN protein, or its DNA-binding activity on downstream genes. Diverse protein isoforms derived from MECOM were found to differentially affect the survival and tumor development in ovarian cancer patients through specific mechanisms. Investigating the molecular mechanisms underlying disease pathogenesis and identifying potential drug target proteins at the level of splice variant isoforms were deemed crucial.</p>","PeriodicalId":16610,"journal":{"name":"Journal of Ovarian Research","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490020/pdf/","citationCount":"0","resultStr":"{\"title\":\"MECOM Locus classical transcript isoforms affect tumor immune microenvironment and different targets in ovarian cancer.\",\"authors\":\"Ning Lan, Shuheng Bai, Min Chen, Xuan Wang, Zhaode Feng, Ying Gao, Beina Hui, Wen Ma, Xiangxiang Zhang, Fengyuan Hu, Wanyi Liu, Wenyang Li, Fang Wu, Juan Ren\",\"doi\":\"10.1186/s13048-024-01522-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The MECOM locus is a gene frequently amplified in high-grade serous ovarian carcinoma (HGSOC). Nevertheless, the body of research examining the associations among MECOM transcripts, patient prognosis, and their role in modulating the tumor immune microenvironment (TIME) remains sparse, particularly in large cohorts. This study assessed the expression of MECOM transcripts in 352 HGSOC patients and 88 normal ovarian tissues from the combined GTEx/TCGA database. Using resources such as the UCSC Genome Browser, Ensembl, and NextProt, two transcripts corresponding to classical protein isoforms from MECOM were identified. Cox proportional hazards regression analysis, Kaplan-Meier survival curves, and a comprehensive TIME evaluation algorithm were employed to elucidate the connections between the expression levels of these transcripts and both patient prognosis and TIME status. Chromatin Immunoprecipitation sequencing (ChIP-seq) data for the two protein isoforms, as well as RNA sequencing data post-targeted silencing, were analyzed to identify potential regulatory targets of the different transcription factors. Elevated expression of the MECOM isoform transcripts was correlated with poorer survival in HGSOC patients, potentially through the modulation of cancer-associated fibroblasts (CAFs) and immunosuppressive cell populations. In contrast, higher levels of EVI1 isoform transcripts were linked to enhanced survival, possibly due to the regulation of CD8<sup>+</sup> T cells, macrophages, and a reduction in the expression of JUN protein, or its DNA-binding activity on downstream genes. Diverse protein isoforms derived from MECOM were found to differentially affect the survival and tumor development in ovarian cancer patients through specific mechanisms. Investigating the molecular mechanisms underlying disease pathogenesis and identifying potential drug target proteins at the level of splice variant isoforms were deemed crucial.</p>\",\"PeriodicalId\":16610,\"journal\":{\"name\":\"Journal of Ovarian Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490020/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ovarian Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13048-024-01522-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovarian Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13048-024-01522-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

MECOM 基因座是高级别浆液性卵巢癌(HGSOC)中经常扩增的基因。然而,有关 MECOM 转录本、患者预后及其在调节肿瘤免疫微环境(TIME)中的作用之间关系的研究仍然很少,尤其是在大型队列中。本研究评估了 GTEx/TCGA 联合数据库中 352 例 HGSOC 患者和 88 例正常卵巢组织中 MECOM 转录本的表达情况。利用 UCSC Genome Browser、Ensembl 和 NextProt 等资源,确定了与 MECOM 经典蛋白同工酶对应的两个转录本。我们采用了Cox比例危险回归分析、Kaplan-Meier生存曲线和综合TIME评估算法来阐明这些转录本的表达水平与患者预后和TIME状态之间的联系。分析了两种蛋白同工酶的染色质免疫沉淀测序(ChIP-seq)数据以及靶向沉默后的 RNA 测序数据,以确定不同转录因子的潜在调控靶标。MECOM异构体转录本的表达升高与HGSOC患者的生存率降低相关,这可能是通过调节癌症相关成纤维细胞(CAF)和免疫抑制细胞群实现的。相反,较高水平的 EVI1 异构体转录本与生存率提高有关,这可能是由于对 CD8+ T 细胞、巨噬细胞的调节,以及 JUN 蛋白或其对下游基因的 DNA 结合活性的降低。研究发现,来自 MECOM 的多种蛋白质同工酶通过特定机制对卵巢癌患者的生存和肿瘤发展产生不同影响。研究疾病发病的分子机制以及在剪接变异同工酶水平上确定潜在的药物靶蛋白被认为是至关重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MECOM Locus classical transcript isoforms affect tumor immune microenvironment and different targets in ovarian cancer.

The MECOM locus is a gene frequently amplified in high-grade serous ovarian carcinoma (HGSOC). Nevertheless, the body of research examining the associations among MECOM transcripts, patient prognosis, and their role in modulating the tumor immune microenvironment (TIME) remains sparse, particularly in large cohorts. This study assessed the expression of MECOM transcripts in 352 HGSOC patients and 88 normal ovarian tissues from the combined GTEx/TCGA database. Using resources such as the UCSC Genome Browser, Ensembl, and NextProt, two transcripts corresponding to classical protein isoforms from MECOM were identified. Cox proportional hazards regression analysis, Kaplan-Meier survival curves, and a comprehensive TIME evaluation algorithm were employed to elucidate the connections between the expression levels of these transcripts and both patient prognosis and TIME status. Chromatin Immunoprecipitation sequencing (ChIP-seq) data for the two protein isoforms, as well as RNA sequencing data post-targeted silencing, were analyzed to identify potential regulatory targets of the different transcription factors. Elevated expression of the MECOM isoform transcripts was correlated with poorer survival in HGSOC patients, potentially through the modulation of cancer-associated fibroblasts (CAFs) and immunosuppressive cell populations. In contrast, higher levels of EVI1 isoform transcripts were linked to enhanced survival, possibly due to the regulation of CD8+ T cells, macrophages, and a reduction in the expression of JUN protein, or its DNA-binding activity on downstream genes. Diverse protein isoforms derived from MECOM were found to differentially affect the survival and tumor development in ovarian cancer patients through specific mechanisms. Investigating the molecular mechanisms underlying disease pathogenesis and identifying potential drug target proteins at the level of splice variant isoforms were deemed crucial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Ovarian Research
Journal of Ovarian Research REPRODUCTIVE BIOLOGY-
CiteScore
6.20
自引率
2.50%
发文量
125
审稿时长
>12 weeks
期刊介绍: Journal of Ovarian Research is an open access, peer reviewed, online journal that aims to provide a forum for high-quality basic and clinical research on ovarian function, abnormalities, and cancer. The journal focuses on research that provides new insights into ovarian functions as well as prevention and treatment of diseases afflicting the organ. Topical areas include, but are not restricted to: Ovary development, hormone secretion and regulation Follicle growth and ovulation Infertility and Polycystic ovarian syndrome Regulation of pituitary and other biological functions by ovarian hormones Ovarian cancer, its prevention, diagnosis and treatment Drug development and screening Role of stem cells in ovary development and function.
期刊最新文献
A novel ITGB8 transcript variant sustains ovarian cancer cell survival through genomic instability and altered ploidy on a mutant p53 background. Machine learning models in evaluating the malignancy risk of ovarian tumors: a comparative study. ATF3 mediates PM2.5-induced apoptosis and inflammation in ovarian granulosa cells. Causal relationship between inflammatory cytokines and polycystic ovary syndrome: a bidirectional mendelian randomization study. Implication of vasopressin receptor genes (AVPR1A and AVPR1B) in the susceptibility to polycystic ovary syndrome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1