Yu-Qing Fang, Hui Ding, Tao Li, Xiao-Jie Zhao, Dan Luo, Yi Liu, Yanhui Li
{"title":"补充 N-乙酰半胱氨酸可改善多囊卵巢综合征患者的内分泌代谢状况和促排卵效果。","authors":"Yu-Qing Fang, Hui Ding, Tao Li, Xiao-Jie Zhao, Dan Luo, Yi Liu, Yanhui Li","doi":"10.1186/s13048-024-01528-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Polycystic ovary syndrome (PCOS) affects 6-20% of women worldwide, with insulin resistance and hyperinsulinemia occurring in 50-70% of patients. Hyperinsulinemia exacerbates oxidative stress, contributing to PCOS pathogenesis. N-acetylcysteine (NAC) is an antioxidant and insulin sensitizer that shows promise as a therapeutic for PCOS. Our current study aimed to investigate the effects of NAC supplementation on endocrine-metabolic parameters in PCOS mice and its effect on ovulation induction (OI) efficacy in women with PCOS.</p><p><strong>Methods: </strong>Female C57BL/6 mice were orally administered letrozole (LE) to induce PCOS and then randomly divided into groups receiving daily oral administration of 160 mg/kg NAC (PCOS + NAC group), 200 mg/kg metformin (PCOS + Met group), or 0.5% carboxymethyl cellulose (drug solvent) (pure PCOS group) for 12 days. Healthy female mice served as pure controls. Estrous cycles were monitored during the intervention. Metabolic and hormone levels, ovarian phenotypes, antioxidant activity in ovarian tissues, and oxidative stress levels in oocytes were assessed post-intervention. Furthermore, a pragmatic, randomized, controlled clinical study was conducted with 230 PCOS women, randomly assigned to the NAC group (1.8 g/day oral NAC, n = 115) or the control group (n = 115). Patients in both groups underwent ≤ 3 cycles of OI with sequential LE and urinary follicle-stimulating hormone (uFSH). Cycle characteristics and pregnancy outcomes were compared between groups.</p><p><strong>Results: </strong>Similar to metformin, NAC supplementation significantly improved the estrous cycles and ovarian phenotypes of PCOS mice; reduced the LH concentration, LH/FSH ratio, and T level; and increased glucose clearance and insulin sensitivity. Notably, NAC significantly reduced oocyte ROS levels and increased the mitochondrial membrane potential in PCOS mice. Additionally, NAC significantly enhanced enzymatic and nonenzymatic antioxidant activities in PCOS mouse ovaries, whereas metformin had no such effect. In the clinical trial, compared to women in the control group, women receiving NAC had significantly lower average uFSH dosage and duration (p < 0.005) and significantly greater clinical pregnancy rates per OI cycle and cumulative clinical pregnancy rates per patient (p < 0.005).</p><p><strong>Conclusion: </strong>NAC supplementation improved endocrine-metabolic parameters in PCOS mice and significantly enhanced OI efficacy with sequential LE and uFSH in women with PCOS. Therefore, NAC could be a valuable adjuvant in OI for women with PCOS.</p>","PeriodicalId":16610,"journal":{"name":"Journal of Ovarian Research","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484282/pdf/","citationCount":"0","resultStr":"{\"title\":\"N-acetylcysteine supplementation improves endocrine-metabolism profiles and ovulation induction efficacy in polycystic ovary syndrome.\",\"authors\":\"Yu-Qing Fang, Hui Ding, Tao Li, Xiao-Jie Zhao, Dan Luo, Yi Liu, Yanhui Li\",\"doi\":\"10.1186/s13048-024-01528-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Polycystic ovary syndrome (PCOS) affects 6-20% of women worldwide, with insulin resistance and hyperinsulinemia occurring in 50-70% of patients. Hyperinsulinemia exacerbates oxidative stress, contributing to PCOS pathogenesis. N-acetylcysteine (NAC) is an antioxidant and insulin sensitizer that shows promise as a therapeutic for PCOS. Our current study aimed to investigate the effects of NAC supplementation on endocrine-metabolic parameters in PCOS mice and its effect on ovulation induction (OI) efficacy in women with PCOS.</p><p><strong>Methods: </strong>Female C57BL/6 mice were orally administered letrozole (LE) to induce PCOS and then randomly divided into groups receiving daily oral administration of 160 mg/kg NAC (PCOS + NAC group), 200 mg/kg metformin (PCOS + Met group), or 0.5% carboxymethyl cellulose (drug solvent) (pure PCOS group) for 12 days. Healthy female mice served as pure controls. Estrous cycles were monitored during the intervention. Metabolic and hormone levels, ovarian phenotypes, antioxidant activity in ovarian tissues, and oxidative stress levels in oocytes were assessed post-intervention. Furthermore, a pragmatic, randomized, controlled clinical study was conducted with 230 PCOS women, randomly assigned to the NAC group (1.8 g/day oral NAC, n = 115) or the control group (n = 115). Patients in both groups underwent ≤ 3 cycles of OI with sequential LE and urinary follicle-stimulating hormone (uFSH). Cycle characteristics and pregnancy outcomes were compared between groups.</p><p><strong>Results: </strong>Similar to metformin, NAC supplementation significantly improved the estrous cycles and ovarian phenotypes of PCOS mice; reduced the LH concentration, LH/FSH ratio, and T level; and increased glucose clearance and insulin sensitivity. Notably, NAC significantly reduced oocyte ROS levels and increased the mitochondrial membrane potential in PCOS mice. Additionally, NAC significantly enhanced enzymatic and nonenzymatic antioxidant activities in PCOS mouse ovaries, whereas metformin had no such effect. In the clinical trial, compared to women in the control group, women receiving NAC had significantly lower average uFSH dosage and duration (p < 0.005) and significantly greater clinical pregnancy rates per OI cycle and cumulative clinical pregnancy rates per patient (p < 0.005).</p><p><strong>Conclusion: </strong>NAC supplementation improved endocrine-metabolic parameters in PCOS mice and significantly enhanced OI efficacy with sequential LE and uFSH in women with PCOS. Therefore, NAC could be a valuable adjuvant in OI for women with PCOS.</p>\",\"PeriodicalId\":16610,\"journal\":{\"name\":\"Journal of Ovarian Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484282/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ovarian Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13048-024-01528-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovarian Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13048-024-01528-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
N-acetylcysteine supplementation improves endocrine-metabolism profiles and ovulation induction efficacy in polycystic ovary syndrome.
Background: Polycystic ovary syndrome (PCOS) affects 6-20% of women worldwide, with insulin resistance and hyperinsulinemia occurring in 50-70% of patients. Hyperinsulinemia exacerbates oxidative stress, contributing to PCOS pathogenesis. N-acetylcysteine (NAC) is an antioxidant and insulin sensitizer that shows promise as a therapeutic for PCOS. Our current study aimed to investigate the effects of NAC supplementation on endocrine-metabolic parameters in PCOS mice and its effect on ovulation induction (OI) efficacy in women with PCOS.
Methods: Female C57BL/6 mice were orally administered letrozole (LE) to induce PCOS and then randomly divided into groups receiving daily oral administration of 160 mg/kg NAC (PCOS + NAC group), 200 mg/kg metformin (PCOS + Met group), or 0.5% carboxymethyl cellulose (drug solvent) (pure PCOS group) for 12 days. Healthy female mice served as pure controls. Estrous cycles were monitored during the intervention. Metabolic and hormone levels, ovarian phenotypes, antioxidant activity in ovarian tissues, and oxidative stress levels in oocytes were assessed post-intervention. Furthermore, a pragmatic, randomized, controlled clinical study was conducted with 230 PCOS women, randomly assigned to the NAC group (1.8 g/day oral NAC, n = 115) or the control group (n = 115). Patients in both groups underwent ≤ 3 cycles of OI with sequential LE and urinary follicle-stimulating hormone (uFSH). Cycle characteristics and pregnancy outcomes were compared between groups.
Results: Similar to metformin, NAC supplementation significantly improved the estrous cycles and ovarian phenotypes of PCOS mice; reduced the LH concentration, LH/FSH ratio, and T level; and increased glucose clearance and insulin sensitivity. Notably, NAC significantly reduced oocyte ROS levels and increased the mitochondrial membrane potential in PCOS mice. Additionally, NAC significantly enhanced enzymatic and nonenzymatic antioxidant activities in PCOS mouse ovaries, whereas metformin had no such effect. In the clinical trial, compared to women in the control group, women receiving NAC had significantly lower average uFSH dosage and duration (p < 0.005) and significantly greater clinical pregnancy rates per OI cycle and cumulative clinical pregnancy rates per patient (p < 0.005).
Conclusion: NAC supplementation improved endocrine-metabolic parameters in PCOS mice and significantly enhanced OI efficacy with sequential LE and uFSH in women with PCOS. Therefore, NAC could be a valuable adjuvant in OI for women with PCOS.
期刊介绍:
Journal of Ovarian Research is an open access, peer reviewed, online journal that aims to provide a forum for high-quality basic and clinical research on ovarian function, abnormalities, and cancer. The journal focuses on research that provides new insights into ovarian functions as well as prevention and treatment of diseases afflicting the organ.
Topical areas include, but are not restricted to:
Ovary development, hormone secretion and regulation
Follicle growth and ovulation
Infertility and Polycystic ovarian syndrome
Regulation of pituitary and other biological functions by ovarian hormones
Ovarian cancer, its prevention, diagnosis and treatment
Drug development and screening
Role of stem cells in ovary development and function.