Yue Jiang , Karan Punjabi , Iain Pierce , Daniel Knight , Tina Yao , Jennifer Steeden , Alun D. Hughes , Vivek Muthurangu , Rhodri Davies
{"title":"从常规心脏磁共振定位器创建各向同性三维主动脉分割的机器学习算法。","authors":"Yue Jiang , Karan Punjabi , Iain Pierce , Daniel Knight , Tina Yao , Jennifer Steeden , Alun D. Hughes , Vivek Muthurangu , Rhodri Davies","doi":"10.1016/j.mri.2024.110253","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The identification and measurement of aortic aneurysms is an important clinical problem. While specialized high-resolution 3D CMR sequences allow detailed aortic assessment, they are time-consuming which limits their use in screening routine cardiac scans and in population studies.</div></div><div><h3>Methods</h3><div>A 3D U-Net, U-Net<sub>LR,</sub> was used to create 3D isotropic segmentations of the aorta from standard anisotropic 2D trans-axial localizers with low through-plane resolution. Training data was generated from high-resolution 3D isotropic whole heart images by simulating anisotropic images that resemble the low-resolution 2D localizers (the inputs). These inputs were paired with 3D isotropic ‘ground truth’ segmentation masks (the targets) created by a clinician from the high-resolution isotropic images. Segmentation quality was evaluated using an external dataset from UK Biobank. Segmentation accuracy was measured against ground-truth segmentations from concurrently acquired cardiac-triggered, respiratory-gated, high-resolution 3D isotropic whole heart images. Finally, the proposed method was compared to U-Net<sub>HR</sub>, a 3D U-Net variant trained directly on high-resolution 3D isotropic images. A second observer was recruited to investigate the interobserver variability.</div></div><div><h3>Results</h3><div>Qualitative validation on an external dataset (UK Biobank) of 180 subjects showed that 93 % of 3D segmentations with the proposed model (U-Net<sub>LR</sub>) were considered suitable for clinical use. In quantitative analysis, the proposed method (U-Net<sub>LR</sub>) showed good agreement with ground-truth segmentations from isotropic 3D images with a mean DICE score of 0.9, which is no difference from automated segmentations made directly on the high-resolution 3D isotropic aorta images (U-Net<sub>HR</sub>). When comparing measurements, there is no significant difference between U-Net<sub>LR,</sub> U-Net<sub>HR</sub> and two clinical observers in the diameter measurements at the mid ascending aorta, mid aortic arch, and descending aorta.</div></div><div><h3>Conclusions</h3><div>A new method of producing isotropic 3D aortic segmentations from routine CMR 2D anisotropic localizers shows good agreement with segmentation made directly from 3D isotropic images. The method has the potential to be used as a simple screening method for aortic aneurysms without the need for additional sequences.</div></div>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":"115 ","pages":"Article 110253"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A machine learning algorithm for creating isotropic 3D aortic segmentations from routine cardiac MR localizers\",\"authors\":\"Yue Jiang , Karan Punjabi , Iain Pierce , Daniel Knight , Tina Yao , Jennifer Steeden , Alun D. Hughes , Vivek Muthurangu , Rhodri Davies\",\"doi\":\"10.1016/j.mri.2024.110253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>The identification and measurement of aortic aneurysms is an important clinical problem. While specialized high-resolution 3D CMR sequences allow detailed aortic assessment, they are time-consuming which limits their use in screening routine cardiac scans and in population studies.</div></div><div><h3>Methods</h3><div>A 3D U-Net, U-Net<sub>LR,</sub> was used to create 3D isotropic segmentations of the aorta from standard anisotropic 2D trans-axial localizers with low through-plane resolution. Training data was generated from high-resolution 3D isotropic whole heart images by simulating anisotropic images that resemble the low-resolution 2D localizers (the inputs). These inputs were paired with 3D isotropic ‘ground truth’ segmentation masks (the targets) created by a clinician from the high-resolution isotropic images. Segmentation quality was evaluated using an external dataset from UK Biobank. Segmentation accuracy was measured against ground-truth segmentations from concurrently acquired cardiac-triggered, respiratory-gated, high-resolution 3D isotropic whole heart images. Finally, the proposed method was compared to U-Net<sub>HR</sub>, a 3D U-Net variant trained directly on high-resolution 3D isotropic images. A second observer was recruited to investigate the interobserver variability.</div></div><div><h3>Results</h3><div>Qualitative validation on an external dataset (UK Biobank) of 180 subjects showed that 93 % of 3D segmentations with the proposed model (U-Net<sub>LR</sub>) were considered suitable for clinical use. In quantitative analysis, the proposed method (U-Net<sub>LR</sub>) showed good agreement with ground-truth segmentations from isotropic 3D images with a mean DICE score of 0.9, which is no difference from automated segmentations made directly on the high-resolution 3D isotropic aorta images (U-Net<sub>HR</sub>). When comparing measurements, there is no significant difference between U-Net<sub>LR,</sub> U-Net<sub>HR</sub> and two clinical observers in the diameter measurements at the mid ascending aorta, mid aortic arch, and descending aorta.</div></div><div><h3>Conclusions</h3><div>A new method of producing isotropic 3D aortic segmentations from routine CMR 2D anisotropic localizers shows good agreement with segmentation made directly from 3D isotropic images. The method has the potential to be used as a simple screening method for aortic aneurysms without the need for additional sequences.</div></div>\",\"PeriodicalId\":18165,\"journal\":{\"name\":\"Magnetic resonance imaging\",\"volume\":\"115 \",\"pages\":\"Article 110253\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic resonance imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0730725X24002340\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0730725X24002340","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
A machine learning algorithm for creating isotropic 3D aortic segmentations from routine cardiac MR localizers
Background
The identification and measurement of aortic aneurysms is an important clinical problem. While specialized high-resolution 3D CMR sequences allow detailed aortic assessment, they are time-consuming which limits their use in screening routine cardiac scans and in population studies.
Methods
A 3D U-Net, U-NetLR, was used to create 3D isotropic segmentations of the aorta from standard anisotropic 2D trans-axial localizers with low through-plane resolution. Training data was generated from high-resolution 3D isotropic whole heart images by simulating anisotropic images that resemble the low-resolution 2D localizers (the inputs). These inputs were paired with 3D isotropic ‘ground truth’ segmentation masks (the targets) created by a clinician from the high-resolution isotropic images. Segmentation quality was evaluated using an external dataset from UK Biobank. Segmentation accuracy was measured against ground-truth segmentations from concurrently acquired cardiac-triggered, respiratory-gated, high-resolution 3D isotropic whole heart images. Finally, the proposed method was compared to U-NetHR, a 3D U-Net variant trained directly on high-resolution 3D isotropic images. A second observer was recruited to investigate the interobserver variability.
Results
Qualitative validation on an external dataset (UK Biobank) of 180 subjects showed that 93 % of 3D segmentations with the proposed model (U-NetLR) were considered suitable for clinical use. In quantitative analysis, the proposed method (U-NetLR) showed good agreement with ground-truth segmentations from isotropic 3D images with a mean DICE score of 0.9, which is no difference from automated segmentations made directly on the high-resolution 3D isotropic aorta images (U-NetHR). When comparing measurements, there is no significant difference between U-NetLR, U-NetHR and two clinical observers in the diameter measurements at the mid ascending aorta, mid aortic arch, and descending aorta.
Conclusions
A new method of producing isotropic 3D aortic segmentations from routine CMR 2D anisotropic localizers shows good agreement with segmentation made directly from 3D isotropic images. The method has the potential to be used as a simple screening method for aortic aneurysms without the need for additional sequences.
期刊介绍:
Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.