揭示联系:探索纤维肌痛中的肌肉氧饱和度及其对症状学和治疗策略的影响。

IF 3 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Medical Gas Research Pub Date : 2025-03-01 Epub Date: 2024-04-21 DOI:10.4103/mgr.MEDGASRES-D-24-00013
Alejandro Rubio-Zarapuz, Jose A Parraca, José Francisco Tornero-Aguilera, Vicente J Clemente-Suárez
{"title":"揭示联系:探索纤维肌痛中的肌肉氧饱和度及其对症状学和治疗策略的影响。","authors":"Alejandro Rubio-Zarapuz, Jose A Parraca, José Francisco Tornero-Aguilera, Vicente J Clemente-Suárez","doi":"10.4103/mgr.MEDGASRES-D-24-00013","DOIUrl":null,"url":null,"abstract":"<p><p>Fibromyalgia, characterized as a complex chronic pain syndrome, presents with symptoms of pervasive musculoskeletal pain, significant fatigue, and pronounced sensitivity at specific anatomical sites. Despite extensive research efforts, the origins of fibromyalgia remain enigmatic. This narrative review explores the intricate relationship between muscle oxygen saturation and fibromyalgia, positing that disruptions in the oxygenation processes within muscle tissues markedly influence the symptom profile of this disorder. Muscle oxygen saturation, crucial for muscle function, has been meticulously investigated in fibromyalgia patients through non-invasive techniques such as near-infrared spectroscopy and magnetic resonance imaging. The body of evidence consistently indicates substantial alterations in oxygen utilization within muscle fibers, manifesting as reduced efficiency in oxygen uptake during both rest and physical activity. These anomalies play a significant role in fibromyalgia's symptomatology, especially in terms of chronic pain and severe fatigue, potentially creating conditions that heighten pain sensitivity and accumulate metabolic byproducts. Hypothesized mechanisms for these findings encompass dysfunctions in microcirculation, mitochondrial irregularities, and autonomic nervous system disturbances, all meriting further research. Understanding the dynamics of muscle oxygen saturation in fibromyalgia is of paramount clinical importance, offering the potential for tailored therapeutic approaches to alleviate symptoms and improve the quality of life for sufferers. This investigation not only opens new avenues for innovative research but also fosters hope for more effective treatment strategies and improved outcomes for individuals with fibromyalgia.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"15 1","pages":"58-72"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515064/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unveiling the link: exploring muscle oxygen saturation in fibromyalgia and its implications for symptomatology and therapeutic strategies.\",\"authors\":\"Alejandro Rubio-Zarapuz, Jose A Parraca, José Francisco Tornero-Aguilera, Vicente J Clemente-Suárez\",\"doi\":\"10.4103/mgr.MEDGASRES-D-24-00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fibromyalgia, characterized as a complex chronic pain syndrome, presents with symptoms of pervasive musculoskeletal pain, significant fatigue, and pronounced sensitivity at specific anatomical sites. Despite extensive research efforts, the origins of fibromyalgia remain enigmatic. This narrative review explores the intricate relationship between muscle oxygen saturation and fibromyalgia, positing that disruptions in the oxygenation processes within muscle tissues markedly influence the symptom profile of this disorder. Muscle oxygen saturation, crucial for muscle function, has been meticulously investigated in fibromyalgia patients through non-invasive techniques such as near-infrared spectroscopy and magnetic resonance imaging. The body of evidence consistently indicates substantial alterations in oxygen utilization within muscle fibers, manifesting as reduced efficiency in oxygen uptake during both rest and physical activity. These anomalies play a significant role in fibromyalgia's symptomatology, especially in terms of chronic pain and severe fatigue, potentially creating conditions that heighten pain sensitivity and accumulate metabolic byproducts. Hypothesized mechanisms for these findings encompass dysfunctions in microcirculation, mitochondrial irregularities, and autonomic nervous system disturbances, all meriting further research. Understanding the dynamics of muscle oxygen saturation in fibromyalgia is of paramount clinical importance, offering the potential for tailored therapeutic approaches to alleviate symptoms and improve the quality of life for sufferers. This investigation not only opens new avenues for innovative research but also fosters hope for more effective treatment strategies and improved outcomes for individuals with fibromyalgia.</p>\",\"PeriodicalId\":18559,\"journal\":{\"name\":\"Medical Gas Research\",\"volume\":\"15 1\",\"pages\":\"58-72\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515064/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Gas Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/mgr.MEDGASRES-D-24-00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/mgr.MEDGASRES-D-24-00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

纤维肌痛是一种复杂的慢性疼痛综合征,表现为普遍的肌肉骨骼疼痛、明显的疲劳和特定解剖部位的明显敏感。尽管进行了广泛的研究,纤维肌痛的起源仍是一个谜。这篇叙述性综述探讨了肌肉氧饱和度与纤维肌痛之间错综复杂的关系,认为肌肉组织内氧合过程的紊乱明显影响了这种疾病的症状特征。肌肉氧饱和度对肌肉功能至关重要,已通过近红外光谱和磁共振成像等非侵入性技术对纤维肌痛患者的肌肉氧饱和度进行了细致的研究。大量证据一致表明,肌肉纤维内的氧利用率发生了重大改变,表现为在休息和体力活动期间摄氧效率降低。这些异常在纤维肌痛的症状学中扮演着重要角色,尤其是在慢性疼痛和严重疲劳方面,有可能造成疼痛敏感度升高和代谢副产品累积的情况。这些发现的假设机制包括微循环功能障碍、线粒体异常和自律神经系统紊乱,所有这些都值得进一步研究。了解纤维肌痛患者肌肉血氧饱和度的动态变化具有重要的临床意义,它为量身定制的治疗方法提供了可能性,可减轻症状并改善患者的生活质量。这项研究不仅为创新性研究开辟了新途径,还为纤维肌痛患者制定更有效的治疗策略和改善治疗效果带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unveiling the link: exploring muscle oxygen saturation in fibromyalgia and its implications for symptomatology and therapeutic strategies.

Fibromyalgia, characterized as a complex chronic pain syndrome, presents with symptoms of pervasive musculoskeletal pain, significant fatigue, and pronounced sensitivity at specific anatomical sites. Despite extensive research efforts, the origins of fibromyalgia remain enigmatic. This narrative review explores the intricate relationship between muscle oxygen saturation and fibromyalgia, positing that disruptions in the oxygenation processes within muscle tissues markedly influence the symptom profile of this disorder. Muscle oxygen saturation, crucial for muscle function, has been meticulously investigated in fibromyalgia patients through non-invasive techniques such as near-infrared spectroscopy and magnetic resonance imaging. The body of evidence consistently indicates substantial alterations in oxygen utilization within muscle fibers, manifesting as reduced efficiency in oxygen uptake during both rest and physical activity. These anomalies play a significant role in fibromyalgia's symptomatology, especially in terms of chronic pain and severe fatigue, potentially creating conditions that heighten pain sensitivity and accumulate metabolic byproducts. Hypothesized mechanisms for these findings encompass dysfunctions in microcirculation, mitochondrial irregularities, and autonomic nervous system disturbances, all meriting further research. Understanding the dynamics of muscle oxygen saturation in fibromyalgia is of paramount clinical importance, offering the potential for tailored therapeutic approaches to alleviate symptoms and improve the quality of life for sufferers. This investigation not only opens new avenues for innovative research but also fosters hope for more effective treatment strategies and improved outcomes for individuals with fibromyalgia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Gas Research
Medical Gas Research MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
5.10
自引率
13.80%
发文量
35
期刊介绍: Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1