用低曲率微电极阵列记录目标定向导航过程中腹侧被盖区的神经元活动

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Microsystems & Nanoengineering Pub Date : 2024-10-14 DOI:10.1038/s41378-024-00778-2
Wei Xu, Mixia Wang, Gucheng Yang, Fan Mo, Yaoyao Liu, Jin Shan, Luyi Jing, Ming Li, Juntao Liu, Shiya Lv, Yiming Duan, Meiqi Han, Zhaojie Xu, Yilin Song, Xinxia Cai
{"title":"用低曲率微电极阵列记录目标定向导航过程中腹侧被盖区的神经元活动","authors":"Wei Xu, Mixia Wang, Gucheng Yang, Fan Mo, Yaoyao Liu, Jin Shan, Luyi Jing, Ming Li, Juntao Liu, Shiya Lv, Yiming Duan, Meiqi Han, Zhaojie Xu, Yilin Song, Xinxia Cai","doi":"10.1038/s41378-024-00778-2","DOIUrl":null,"url":null,"abstract":"<p><p>Navigating toward destinations with rewards is a common behavior among animals. The ventral tegmental area (VTA) has been shown to be responsible for reward coding and reward cue learning, and its response to other variables, such as kinematics, has also been increasingly studied. These findings suggest a potential relationship between animal navigation behavior and VTA activity. However, the deep location and small volume of the VTA pose significant challenges to the precision of electrode implantation, increasing the uncertainty of measurement results during animal navigation and thus limiting research on the role of the VTA in goal-directed navigation. To address this gap, we innovatively designed and fabricated low-curvature microelectrode arrays (MEAs) via a novel backside dry etching technique to release residual stress. Histological verification confirmed that low-curvature MEAs indeed improved electrode implantation precision. These low-curvature MEAs were subsequently implanted into the VTA of the rats to observe their electrophysiological activity in a freely chosen modified T-maze. The results of the behavioral experiments revealed that the rats could quickly learn the reward probability corresponding to the left and right paths and that VTA neurons were deeply involved in goal-directed navigation. Compared with those in no-reward trials, VTA neurons in reward trials presented a significantly greater firing rate and larger local field potential (LFP) amplitude during the reward-consuming period. Notably, we discovered place fields mapped by VTA neurons, which disappeared or were reconstructed with changes in the path-outcome relationship. These results provide new insights into the VTA and its role in goal-directed navigation. Our designed and fabricated low-curvature microelectrode arrays can serve as a new device for precise deep brain implantation in the future.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"145"},"PeriodicalIF":7.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471829/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neuronal activity in the ventral tegmental area during goal-directed navigation recorded by low-curvature microelectrode arrays.\",\"authors\":\"Wei Xu, Mixia Wang, Gucheng Yang, Fan Mo, Yaoyao Liu, Jin Shan, Luyi Jing, Ming Li, Juntao Liu, Shiya Lv, Yiming Duan, Meiqi Han, Zhaojie Xu, Yilin Song, Xinxia Cai\",\"doi\":\"10.1038/s41378-024-00778-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Navigating toward destinations with rewards is a common behavior among animals. The ventral tegmental area (VTA) has been shown to be responsible for reward coding and reward cue learning, and its response to other variables, such as kinematics, has also been increasingly studied. These findings suggest a potential relationship between animal navigation behavior and VTA activity. However, the deep location and small volume of the VTA pose significant challenges to the precision of electrode implantation, increasing the uncertainty of measurement results during animal navigation and thus limiting research on the role of the VTA in goal-directed navigation. To address this gap, we innovatively designed and fabricated low-curvature microelectrode arrays (MEAs) via a novel backside dry etching technique to release residual stress. Histological verification confirmed that low-curvature MEAs indeed improved electrode implantation precision. These low-curvature MEAs were subsequently implanted into the VTA of the rats to observe their electrophysiological activity in a freely chosen modified T-maze. The results of the behavioral experiments revealed that the rats could quickly learn the reward probability corresponding to the left and right paths and that VTA neurons were deeply involved in goal-directed navigation. Compared with those in no-reward trials, VTA neurons in reward trials presented a significantly greater firing rate and larger local field potential (LFP) amplitude during the reward-consuming period. Notably, we discovered place fields mapped by VTA neurons, which disappeared or were reconstructed with changes in the path-outcome relationship. These results provide new insights into the VTA and its role in goal-directed navigation. Our designed and fabricated low-curvature microelectrode arrays can serve as a new device for precise deep brain implantation in the future.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"10 1\",\"pages\":\"145\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471829/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00778-2\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00778-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

向有奖励的目的地导航是动物的一种常见行为。腹侧被盖区(VTA)被证明负责奖励编码和奖励线索学习,其对运动学等其他变量的反应也被越来越多地研究。这些研究结果表明,动物导航行为与 VTA 活动之间存在潜在关系。然而,VTA位置深且体积小,给电极植入的精确性带来了巨大挑战,增加了动物导航过程中测量结果的不确定性,从而限制了对VTA在目标定向导航中作用的研究。为了弥补这一不足,我们通过新型背面干蚀刻技术释放残余应力,创新性地设计和制造了低曲率微电极阵列(MEA)。组织学验证证实,低曲率 MEA 确实提高了电极植入的精度。随后将这些低曲率 MEA 植入大鼠的 VTA,观察它们在自由选择的改良 T 型迷宫中的电生理活动。行为实验的结果表明,大鼠能很快学会与左右路径相对应的奖励概率,VTA神经元深度参与了目标定向导航。与无奖赏试验中的神经元相比,奖赏试验中的VTA神经元在奖赏消耗期表现出明显更高的发射率和更大的局域场电位(LFP)振幅。值得注意的是,我们发现 VTA 神经元映射的地点场会随着路径-结果关系的变化而消失或重建。这些结果为我们提供了有关 VTA 及其在目标定向导航中作用的新见解。我们设计和制造的低曲率微电极阵列可作为未来精确脑深部植入的新设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neuronal activity in the ventral tegmental area during goal-directed navigation recorded by low-curvature microelectrode arrays.

Navigating toward destinations with rewards is a common behavior among animals. The ventral tegmental area (VTA) has been shown to be responsible for reward coding and reward cue learning, and its response to other variables, such as kinematics, has also been increasingly studied. These findings suggest a potential relationship between animal navigation behavior and VTA activity. However, the deep location and small volume of the VTA pose significant challenges to the precision of electrode implantation, increasing the uncertainty of measurement results during animal navigation and thus limiting research on the role of the VTA in goal-directed navigation. To address this gap, we innovatively designed and fabricated low-curvature microelectrode arrays (MEAs) via a novel backside dry etching technique to release residual stress. Histological verification confirmed that low-curvature MEAs indeed improved electrode implantation precision. These low-curvature MEAs were subsequently implanted into the VTA of the rats to observe their electrophysiological activity in a freely chosen modified T-maze. The results of the behavioral experiments revealed that the rats could quickly learn the reward probability corresponding to the left and right paths and that VTA neurons were deeply involved in goal-directed navigation. Compared with those in no-reward trials, VTA neurons in reward trials presented a significantly greater firing rate and larger local field potential (LFP) amplitude during the reward-consuming period. Notably, we discovered place fields mapped by VTA neurons, which disappeared or were reconstructed with changes in the path-outcome relationship. These results provide new insights into the VTA and its role in goal-directed navigation. Our designed and fabricated low-curvature microelectrode arrays can serve as a new device for precise deep brain implantation in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
期刊最新文献
An optomechanical MEMS geophone with a 2.5 ng/Hz1/2 noise floor for oil/gas exploration. Microbubble-based fabrication of resilient porous ionogels for high-sensitivity pressure sensors. Size-selective microfluidics delineate the effects of combinatorial immunotherapy on T-cell response dynamics at the single-cell level. Highly dispersive multiplexed micromechanical device array for spatially resolved sensing and actuation. Molecularly imprinted fluorescence sensor chip for lactate measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1