{"title":"通过同时抑制 KRAS、MEK 和 JAK2 靶向 KRAS 突变胰腺癌。","authors":"Satoru Miyazaki, Masato Kitazawa, Satoshi Nakamura, Makoto Koyama, Yuta Yamamoto, Nao Hondo, Masahiro Kataoka, Hirokazu Tanaka, Michiko Takeoka, Daisuke Komatsu, Yuji Soejima","doi":"10.1002/1878-0261.13751","DOIUrl":null,"url":null,"abstract":"<p><p>The Kirsten rat sarcoma (KRAS) oncogene was considered \"undruggable\" until the development of sotorasib, a KRAS<sup>G12C</sup> selective inhibitor that shows favorable effects against lung cancers. MRTX1133, a novel KRAS<sup>G12D</sup> inhibitor, has shown promising results in basic research, although its effects against pancreatic cancer are limited when used alone. Therefore, there is an urgent need to identify effective drugs that can be used in combination with KRAS inhibitors. In this study, we found that administration of the KRAS inhibitors sotorasib or MRTX1133 upregulated STAT3 phosphorylation and reactivated ERK through a feedback reaction. The addition of the MEK inhibitor trametinib and the JAK2 inhibitor fedratinib successfully reversed this effect and resulted in significant growth inhibition in vitro and in vivo. Analyses of sotorasib- and MRTX1133-resistant cells showed that trametinib plus fedratinib reversed the resistance to sotorasib or MRTX1133. These findings suggest that the JAK2-mediated pathway and reactivation of the MAPK pathway may play key roles in resistance to KRAS inhibitors in pancreatic cancers. Accordingly, simultaneous inhibition of KRAS, MEK, and JAK2 could be an innovative therapeutic strategy against KRAS-mutant pancreatic cancer.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting KRAS-mutant pancreatic cancer through simultaneous inhibition of KRAS, MEK, and JAK2.\",\"authors\":\"Satoru Miyazaki, Masato Kitazawa, Satoshi Nakamura, Makoto Koyama, Yuta Yamamoto, Nao Hondo, Masahiro Kataoka, Hirokazu Tanaka, Michiko Takeoka, Daisuke Komatsu, Yuji Soejima\",\"doi\":\"10.1002/1878-0261.13751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Kirsten rat sarcoma (KRAS) oncogene was considered \\\"undruggable\\\" until the development of sotorasib, a KRAS<sup>G12C</sup> selective inhibitor that shows favorable effects against lung cancers. MRTX1133, a novel KRAS<sup>G12D</sup> inhibitor, has shown promising results in basic research, although its effects against pancreatic cancer are limited when used alone. Therefore, there is an urgent need to identify effective drugs that can be used in combination with KRAS inhibitors. In this study, we found that administration of the KRAS inhibitors sotorasib or MRTX1133 upregulated STAT3 phosphorylation and reactivated ERK through a feedback reaction. The addition of the MEK inhibitor trametinib and the JAK2 inhibitor fedratinib successfully reversed this effect and resulted in significant growth inhibition in vitro and in vivo. Analyses of sotorasib- and MRTX1133-resistant cells showed that trametinib plus fedratinib reversed the resistance to sotorasib or MRTX1133. These findings suggest that the JAK2-mediated pathway and reactivation of the MAPK pathway may play key roles in resistance to KRAS inhibitors in pancreatic cancers. Accordingly, simultaneous inhibition of KRAS, MEK, and JAK2 could be an innovative therapeutic strategy against KRAS-mutant pancreatic cancer.</p>\",\"PeriodicalId\":18764,\"journal\":{\"name\":\"Molecular Oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/1878-0261.13751\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.13751","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Targeting KRAS-mutant pancreatic cancer through simultaneous inhibition of KRAS, MEK, and JAK2.
The Kirsten rat sarcoma (KRAS) oncogene was considered "undruggable" until the development of sotorasib, a KRASG12C selective inhibitor that shows favorable effects against lung cancers. MRTX1133, a novel KRASG12D inhibitor, has shown promising results in basic research, although its effects against pancreatic cancer are limited when used alone. Therefore, there is an urgent need to identify effective drugs that can be used in combination with KRAS inhibitors. In this study, we found that administration of the KRAS inhibitors sotorasib or MRTX1133 upregulated STAT3 phosphorylation and reactivated ERK through a feedback reaction. The addition of the MEK inhibitor trametinib and the JAK2 inhibitor fedratinib successfully reversed this effect and resulted in significant growth inhibition in vitro and in vivo. Analyses of sotorasib- and MRTX1133-resistant cells showed that trametinib plus fedratinib reversed the resistance to sotorasib or MRTX1133. These findings suggest that the JAK2-mediated pathway and reactivation of the MAPK pathway may play key roles in resistance to KRAS inhibitors in pancreatic cancers. Accordingly, simultaneous inhibition of KRAS, MEK, and JAK2 could be an innovative therapeutic strategy against KRAS-mutant pancreatic cancer.
Molecular OncologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍:
Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles.
The journal is now fully Open Access with all articles published over the past 10 years freely available.