{"title":"再随机测试中的重复次数。","authors":"Yilong Zhang, Yujie Zhao, Bingjun Wang, Yiwen Luo","doi":"10.1002/pst.2438","DOIUrl":null,"url":null,"abstract":"<p><p>In covariate-adaptive or response-adaptive randomization, the treatment assignment and outcome can be correlated. Under this situation, the re-randomization test is a straightforward and attractive method to provide valid statistical inferences. In this paper, we investigate the number of repetitions in tests. This is motivated by a group sequential design in clinical trials, where the nominal significance bound can be very small at an interim analysis. Accordingly, re-randomization tests lead to a very large number of required repetitions, which may be computationally intractable. To reduce the number of repetitions, we propose an adaptive procedure and compare it with multiple approaches under predefined criteria. Monte Carlo simulations are conducted to show the performance of different approaches in a limited sample size. We also suggest strategies to reduce total computation time and provide practical guidance in preparing, executing, and reporting before and after data are unblinded at an interim analysis, so one can complete the computation within a reasonable time frame.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Number of Repetitions in Re-Randomization Tests.\",\"authors\":\"Yilong Zhang, Yujie Zhao, Bingjun Wang, Yiwen Luo\",\"doi\":\"10.1002/pst.2438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In covariate-adaptive or response-adaptive randomization, the treatment assignment and outcome can be correlated. Under this situation, the re-randomization test is a straightforward and attractive method to provide valid statistical inferences. In this paper, we investigate the number of repetitions in tests. This is motivated by a group sequential design in clinical trials, where the nominal significance bound can be very small at an interim analysis. Accordingly, re-randomization tests lead to a very large number of required repetitions, which may be computationally intractable. To reduce the number of repetitions, we propose an adaptive procedure and compare it with multiple approaches under predefined criteria. Monte Carlo simulations are conducted to show the performance of different approaches in a limited sample size. We also suggest strategies to reduce total computation time and provide practical guidance in preparing, executing, and reporting before and after data are unblinded at an interim analysis, so one can complete the computation within a reasonable time frame.</p>\",\"PeriodicalId\":19934,\"journal\":{\"name\":\"Pharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pst.2438\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2438","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
In covariate-adaptive or response-adaptive randomization, the treatment assignment and outcome can be correlated. Under this situation, the re-randomization test is a straightforward and attractive method to provide valid statistical inferences. In this paper, we investigate the number of repetitions in tests. This is motivated by a group sequential design in clinical trials, where the nominal significance bound can be very small at an interim analysis. Accordingly, re-randomization tests lead to a very large number of required repetitions, which may be computationally intractable. To reduce the number of repetitions, we propose an adaptive procedure and compare it with multiple approaches under predefined criteria. Monte Carlo simulations are conducted to show the performance of different approaches in a limited sample size. We also suggest strategies to reduce total computation time and provide practical guidance in preparing, executing, and reporting before and after data are unblinded at an interim analysis, so one can complete the computation within a reasonable time frame.
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.