Xinxin Chen, Bo Zhang, Xiaohan Jiang, Zhiqiang Liu, Yuguo Zheng
{"title":"通过破坏与霉菌细胞壁合成相关的酰基转移酶 SucT 和 TmaT,改善植物甾醇到 9α-hydroxy-4 androstene-3,17-dione 的生物转化。","authors":"Xinxin Chen, Bo Zhang, Xiaohan Jiang, Zhiqiang Liu, Yuguo Zheng","doi":"10.1007/s11274-024-04165-x","DOIUrl":null,"url":null,"abstract":"<p><p>The bioconversion of low value-added phytosterols into high value-added 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) in Mycolicibacterium neoaurum is a representative step in the steroid pharmaceutical industry. However, the complex mycobacterial cell walls with extremely low permeability and flowability greatly decrease the overall conversion efficiency. Herein, we preliminarily identified two key acyltransferases encoded by Mn_TmaT and Mn_SucT required for the proper synthesis of cell wall in mycobacteria and achieved a significant increase in cell permeability by disrupting them without affecting the cell wall structural stability. At length, the destruction of Mn_TmaT and Mn_SucT alone increased the conversion rate of 9-OHAD from 45.3% (6.67 ± 0.39 g/L) to 62.4% (9.19 ± 0.58 g/L) and 67.9% (10.02 ± 0.62 g/L) while the continuous destruction of Mn_TmaT and Mn_SucT did not further improve the conversion efficiency of 9-OHAD. Notably, it was investigated that the continuous destruction of Mn_TmaT and Mn_SucT led to alterations in both the covalent and non-covalent binding layers of the cell wall, resulting in excessive changes in cell morphology and structure, which ultimately decreased 9-OHAD production. Therefore, this study deciphered a pivotal biosynthetic path of cell wall and provided an efficient and feasible construction strategy of 9-OHAD synthesis in mycobacteria.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"350"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the bioconversion of phytosterols to 9α-hydroxy-4-androstene-3,17-dione by disruption of acyltransferase SucT and TmaT associated with the mycobacterial cell wall synthesis.\",\"authors\":\"Xinxin Chen, Bo Zhang, Xiaohan Jiang, Zhiqiang Liu, Yuguo Zheng\",\"doi\":\"10.1007/s11274-024-04165-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The bioconversion of low value-added phytosterols into high value-added 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) in Mycolicibacterium neoaurum is a representative step in the steroid pharmaceutical industry. However, the complex mycobacterial cell walls with extremely low permeability and flowability greatly decrease the overall conversion efficiency. Herein, we preliminarily identified two key acyltransferases encoded by Mn_TmaT and Mn_SucT required for the proper synthesis of cell wall in mycobacteria and achieved a significant increase in cell permeability by disrupting them without affecting the cell wall structural stability. At length, the destruction of Mn_TmaT and Mn_SucT alone increased the conversion rate of 9-OHAD from 45.3% (6.67 ± 0.39 g/L) to 62.4% (9.19 ± 0.58 g/L) and 67.9% (10.02 ± 0.62 g/L) while the continuous destruction of Mn_TmaT and Mn_SucT did not further improve the conversion efficiency of 9-OHAD. Notably, it was investigated that the continuous destruction of Mn_TmaT and Mn_SucT led to alterations in both the covalent and non-covalent binding layers of the cell wall, resulting in excessive changes in cell morphology and structure, which ultimately decreased 9-OHAD production. Therefore, this study deciphered a pivotal biosynthetic path of cell wall and provided an efficient and feasible construction strategy of 9-OHAD synthesis in mycobacteria.</p>\",\"PeriodicalId\":23703,\"journal\":{\"name\":\"World journal of microbiology & biotechnology\",\"volume\":\"40 11\",\"pages\":\"350\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of microbiology & biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11274-024-04165-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04165-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Improving the bioconversion of phytosterols to 9α-hydroxy-4-androstene-3,17-dione by disruption of acyltransferase SucT and TmaT associated with the mycobacterial cell wall synthesis.
The bioconversion of low value-added phytosterols into high value-added 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) in Mycolicibacterium neoaurum is a representative step in the steroid pharmaceutical industry. However, the complex mycobacterial cell walls with extremely low permeability and flowability greatly decrease the overall conversion efficiency. Herein, we preliminarily identified two key acyltransferases encoded by Mn_TmaT and Mn_SucT required for the proper synthesis of cell wall in mycobacteria and achieved a significant increase in cell permeability by disrupting them without affecting the cell wall structural stability. At length, the destruction of Mn_TmaT and Mn_SucT alone increased the conversion rate of 9-OHAD from 45.3% (6.67 ± 0.39 g/L) to 62.4% (9.19 ± 0.58 g/L) and 67.9% (10.02 ± 0.62 g/L) while the continuous destruction of Mn_TmaT and Mn_SucT did not further improve the conversion efficiency of 9-OHAD. Notably, it was investigated that the continuous destruction of Mn_TmaT and Mn_SucT led to alterations in both the covalent and non-covalent binding layers of the cell wall, resulting in excessive changes in cell morphology and structure, which ultimately decreased 9-OHAD production. Therefore, this study deciphered a pivotal biosynthetic path of cell wall and provided an efficient and feasible construction strategy of 9-OHAD synthesis in mycobacteria.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.