Minseob Lim, Youngjae Lee, Yongwoon Lee, Won Yang, Seongil Kim
{"title":"利用反向计算算法估算垃圾成分和热值,提高垃圾焚烧能源回收效率。","authors":"Minseob Lim, Youngjae Lee, Yongwoon Lee, Won Yang, Seongil Kim","doi":"10.1016/j.wasman.2024.10.014","DOIUrl":null,"url":null,"abstract":"<div><div>The heating value and composition of waste are crucial operational variables for understanding waste incinerators behavior and optimizing their operation. However, because the heating value and composition of waste are highly variable, their prediction in waste incineration plants is difficult. To overcome this issue, this study developed a novel method to derive heating value and composition waste via a reverse calculation algorithm using operating data and physics-based model. In addition, a process simulation model was developed to predict the performance of waste incinerator systems. We derived heating values and compositions of waste in the target incinerator using the supposed method and proposed an operating strategy to improve the energy recovery efficiency of the waste incinerator through the process simulation model. The energy recovery efficiency increased by approximately 10 % relative to that of the existing incinerator operation. The methodology developed in this study can be applied to various incinerator systems. Our study findings contribute to establishing an optimal operation of a waste incinerator by calculating the heating value and composition of waste.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"190 ","pages":"Pages 486-495"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving waste-incineration energy recovery efficiency using a reverse calculation algorithm to estimate waste composition and heating value\",\"authors\":\"Minseob Lim, Youngjae Lee, Yongwoon Lee, Won Yang, Seongil Kim\",\"doi\":\"10.1016/j.wasman.2024.10.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The heating value and composition of waste are crucial operational variables for understanding waste incinerators behavior and optimizing their operation. However, because the heating value and composition of waste are highly variable, their prediction in waste incineration plants is difficult. To overcome this issue, this study developed a novel method to derive heating value and composition waste via a reverse calculation algorithm using operating data and physics-based model. In addition, a process simulation model was developed to predict the performance of waste incinerator systems. We derived heating values and compositions of waste in the target incinerator using the supposed method and proposed an operating strategy to improve the energy recovery efficiency of the waste incinerator through the process simulation model. The energy recovery efficiency increased by approximately 10 % relative to that of the existing incinerator operation. The methodology developed in this study can be applied to various incinerator systems. Our study findings contribute to establishing an optimal operation of a waste incinerator by calculating the heating value and composition of waste.</div></div>\",\"PeriodicalId\":23969,\"journal\":{\"name\":\"Waste management\",\"volume\":\"190 \",\"pages\":\"Pages 486-495\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956053X2400535X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X2400535X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Improving waste-incineration energy recovery efficiency using a reverse calculation algorithm to estimate waste composition and heating value
The heating value and composition of waste are crucial operational variables for understanding waste incinerators behavior and optimizing their operation. However, because the heating value and composition of waste are highly variable, their prediction in waste incineration plants is difficult. To overcome this issue, this study developed a novel method to derive heating value and composition waste via a reverse calculation algorithm using operating data and physics-based model. In addition, a process simulation model was developed to predict the performance of waste incinerator systems. We derived heating values and compositions of waste in the target incinerator using the supposed method and proposed an operating strategy to improve the energy recovery efficiency of the waste incinerator through the process simulation model. The energy recovery efficiency increased by approximately 10 % relative to that of the existing incinerator operation. The methodology developed in this study can be applied to various incinerator systems. Our study findings contribute to establishing an optimal operation of a waste incinerator by calculating the heating value and composition of waste.
期刊介绍:
Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes.
Scope:
Addresses solid wastes in both industrialized and economically developing countries
Covers various types of solid wastes, including:
Municipal (e.g., residential, institutional, commercial, light industrial)
Agricultural
Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)