蛋白质的内在结构紊乱参与了相互作用组的进化。

IF 2 4区 生物学 Q2 BIOLOGY Biosystems Pub Date : 2024-10-20 DOI:10.1016/j.biosystems.2024.105351
Diego M. Bustos
{"title":"蛋白质的内在结构紊乱参与了相互作用组的进化。","authors":"Diego M. Bustos","doi":"10.1016/j.biosystems.2024.105351","DOIUrl":null,"url":null,"abstract":"<div><div>New mathematical tools help understand cell functions, adaptability, and evolvability to discover hidden variables to predict phenotypes that could be tested in the future in wet labs. Different models have been successfully used to discover the properties of the protein-protein interaction networks or interactomes. I found that in the hyperbolic Popularity-Similarity model, cellular proteins with the highest contents of structural intrinsic disorder cluster together in many different eukaryotic interactomes and this is not the case for the prokaryotic <em>E. coli,</em> where proteins with high degree of intrinsic disorder are scarce. I also found that the normalized theta variable from the Popularity-Similarity model for orthologues proteins correlate to the complexity of the organisms in analysis.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"246 ","pages":"Article 105351"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intrinsic structural disorder on proteins is involved in the interactome evolution\",\"authors\":\"Diego M. Bustos\",\"doi\":\"10.1016/j.biosystems.2024.105351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>New mathematical tools help understand cell functions, adaptability, and evolvability to discover hidden variables to predict phenotypes that could be tested in the future in wet labs. Different models have been successfully used to discover the properties of the protein-protein interaction networks or interactomes. I found that in the hyperbolic Popularity-Similarity model, cellular proteins with the highest contents of structural intrinsic disorder cluster together in many different eukaryotic interactomes and this is not the case for the prokaryotic <em>E. coli,</em> where proteins with high degree of intrinsic disorder are scarce. I also found that the normalized theta variable from the Popularity-Similarity model for orthologues proteins correlate to the complexity of the organisms in analysis.</div></div>\",\"PeriodicalId\":50730,\"journal\":{\"name\":\"Biosystems\",\"volume\":\"246 \",\"pages\":\"Article 105351\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303264724002363\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264724002363","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

新的数学工具有助于了解细胞的功能、适应性和进化性,从而发现隐藏的变量,预测未来可在湿实验室进行测试的表型。不同的模型已被成功用于发现蛋白质-蛋白质相互作用网络或相互作用组的特性。我发现,在双曲线流行度-相似度模型中,结构内在无序度最高的细胞蛋白质在许多不同的真核生物相互作用组中聚集在一起,而原核生物大肠杆菌的情况并非如此,在大肠杆菌中,内在无序度高的蛋白质很少。我还发现,同源物蛋白质流行度-相似度模型的归一化θ变量与分析生物的复杂性相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intrinsic structural disorder on proteins is involved in the interactome evolution
New mathematical tools help understand cell functions, adaptability, and evolvability to discover hidden variables to predict phenotypes that could be tested in the future in wet labs. Different models have been successfully used to discover the properties of the protein-protein interaction networks or interactomes. I found that in the hyperbolic Popularity-Similarity model, cellular proteins with the highest contents of structural intrinsic disorder cluster together in many different eukaryotic interactomes and this is not the case for the prokaryotic E. coli, where proteins with high degree of intrinsic disorder are scarce. I also found that the normalized theta variable from the Popularity-Similarity model for orthologues proteins correlate to the complexity of the organisms in analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosystems
Biosystems 生物-生物学
CiteScore
3.70
自引率
18.80%
发文量
129
审稿时长
34 days
期刊介绍: BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.
期刊最新文献
Synechism 2.0: Contours of a New Theory of Continuity in Bioengineering. A mechanistic approach to optimize combination antibiotic therapy Stages and causes of the evolution of language and consciousness: A theoretical reconstruction Neural networks through the lens of evolutionary dynamics Cholesterol-ester prevents lipoprotein core from solidifying: Molecular dynamics simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1