Erik Sengewald, Katinka Hardt, Marie-Ann Sengewald
{"title":"从因果角度看缺失数据估算中的偏差:邪恶辅助变量对测验分数规范化的影响。","authors":"Erik Sengewald, Katinka Hardt, Marie-Ann Sengewald","doi":"10.1080/00273171.2024.2412682","DOIUrl":null,"url":null,"abstract":"<p><p>Among the most important merits of modern missing data techniques such as multiple imputation (MI) and full-information maximum likelihood estimation is the possibility to include additional information about the missingness process via auxiliary variables. During the past decade, the choice of auxiliary variables has been investigated under a variety of different conditions and more recent research points to the potentially biasing effect of certain auxiliary variables, particularly colliders (Thoemmes & Rose, 2014). In this article, we further extend biasing mechanisms of certain auxiliary variables considered in previous research and thereby focus on their effects on individual diagnosis based on norming, in which the whole distribution of a variable is of interest rather than average coefficients (e.g., means). For this, we first provide the theoretical underpinnings of the mechanisms under study and then provide two focused simulations that (i) directly expand on the collider scenario in Thoemmes and Rose (2014, appendix A) by considering outcomes that are relevant to norming and (ii) extend the scenarios under consideration by instrumental variable mechanisms. We illustrate the bias mechanisms for two different norming approaches and exemplify the procedures by means of an empirical example. We end by discussing limitations and implications of our research.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-17"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Causal View on Bias in Missing Data Imputation: The Impact of Evil Auxiliary Variables on Norming of Test Scores.\",\"authors\":\"Erik Sengewald, Katinka Hardt, Marie-Ann Sengewald\",\"doi\":\"10.1080/00273171.2024.2412682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Among the most important merits of modern missing data techniques such as multiple imputation (MI) and full-information maximum likelihood estimation is the possibility to include additional information about the missingness process via auxiliary variables. During the past decade, the choice of auxiliary variables has been investigated under a variety of different conditions and more recent research points to the potentially biasing effect of certain auxiliary variables, particularly colliders (Thoemmes & Rose, 2014). In this article, we further extend biasing mechanisms of certain auxiliary variables considered in previous research and thereby focus on their effects on individual diagnosis based on norming, in which the whole distribution of a variable is of interest rather than average coefficients (e.g., means). For this, we first provide the theoretical underpinnings of the mechanisms under study and then provide two focused simulations that (i) directly expand on the collider scenario in Thoemmes and Rose (2014, appendix A) by considering outcomes that are relevant to norming and (ii) extend the scenarios under consideration by instrumental variable mechanisms. We illustrate the bias mechanisms for two different norming approaches and exemplify the procedures by means of an empirical example. We end by discussing limitations and implications of our research.</p>\",\"PeriodicalId\":53155,\"journal\":{\"name\":\"Multivariate Behavioral Research\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multivariate Behavioral Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/00273171.2024.2412682\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2024.2412682","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Causal View on Bias in Missing Data Imputation: The Impact of Evil Auxiliary Variables on Norming of Test Scores.
Among the most important merits of modern missing data techniques such as multiple imputation (MI) and full-information maximum likelihood estimation is the possibility to include additional information about the missingness process via auxiliary variables. During the past decade, the choice of auxiliary variables has been investigated under a variety of different conditions and more recent research points to the potentially biasing effect of certain auxiliary variables, particularly colliders (Thoemmes & Rose, 2014). In this article, we further extend biasing mechanisms of certain auxiliary variables considered in previous research and thereby focus on their effects on individual diagnosis based on norming, in which the whole distribution of a variable is of interest rather than average coefficients (e.g., means). For this, we first provide the theoretical underpinnings of the mechanisms under study and then provide two focused simulations that (i) directly expand on the collider scenario in Thoemmes and Rose (2014, appendix A) by considering outcomes that are relevant to norming and (ii) extend the scenarios under consideration by instrumental variable mechanisms. We illustrate the bias mechanisms for two different norming approaches and exemplify the procedures by means of an empirical example. We end by discussing limitations and implications of our research.
期刊介绍:
Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.