{"title":"N 端结构域构象和结构域相互作用对 RfaH 折叠转换的影响","authors":"Bahman Seifi, Stefan Wallin","doi":"10.1002/prot.26755","DOIUrl":null,"url":null,"abstract":"<p><p>RfaH is a two-domain metamorphic protein involved in transcription regulation and translation initiation. To carry out its dual functions, RfaH relies on two coupled structural changes: Domain dissociation and fold switching. In the free state, the C-terminal domain (CTD) of RfaH adopts an all-α fold and is tightly associated with the N-terminal domain (NTD). Upon binding to RNA polymerase (RNAP), the domains dissociate and the CTD transforms into an all-β fold while the NTD remains largely, but not entirely, unchanged. We test the idea that a change in the conformation of an extended β-hairpin (β3-β4) located on the NTD, helps trigger domain dissociation. To this end, we use homology modeling to construct a structure, H<sub>1</sub>, which is similar to free RfaH but with a remodeled β3-β4 hairpin. We then use an all-atom physics-based model enhanced with a dual basin structure-based potential to simulate domain separation driven by the thermal unfolding of the CTD with NTD in a fixed, folded conformation. We apply our model to both free RfaH and H<sub>1</sub>. For H<sub>1</sub> we find, in line with our hypothesis, that the CTD exhibits lower stability and the domains dissociate at a lower temperature T, as compared to free RfaH. We do not, however, observe complete refolding to the all-β state in these simulations, suggesting that a change in β3-β4 orientation aids in, but is not sufficient for, domain dissociation. In addition, we study the reverse fold switch in which RfaH returns from a domain-open all-β state to its domain-closed all-α state. We observe a T-dependent transition rate; fold switching is slow at low T, where the CTD tends to be kinetically trapped in its all-β state, and at high-T, where the all-α state becomes unstable. Consequently, our simulations suggest an optimal T at which fold switching is most rapid. At this T, the stabilities of both folds are reduced. Overall, our study suggests that both inter-domain interactions and conformational changes within NTD may be important for the proper functioning of RfaH.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of N-Terminal Domain Conformation and Domain Interactions on RfaH Fold Switching.\",\"authors\":\"Bahman Seifi, Stefan Wallin\",\"doi\":\"10.1002/prot.26755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RfaH is a two-domain metamorphic protein involved in transcription regulation and translation initiation. To carry out its dual functions, RfaH relies on two coupled structural changes: Domain dissociation and fold switching. In the free state, the C-terminal domain (CTD) of RfaH adopts an all-α fold and is tightly associated with the N-terminal domain (NTD). Upon binding to RNA polymerase (RNAP), the domains dissociate and the CTD transforms into an all-β fold while the NTD remains largely, but not entirely, unchanged. We test the idea that a change in the conformation of an extended β-hairpin (β3-β4) located on the NTD, helps trigger domain dissociation. To this end, we use homology modeling to construct a structure, H<sub>1</sub>, which is similar to free RfaH but with a remodeled β3-β4 hairpin. We then use an all-atom physics-based model enhanced with a dual basin structure-based potential to simulate domain separation driven by the thermal unfolding of the CTD with NTD in a fixed, folded conformation. We apply our model to both free RfaH and H<sub>1</sub>. For H<sub>1</sub> we find, in line with our hypothesis, that the CTD exhibits lower stability and the domains dissociate at a lower temperature T, as compared to free RfaH. We do not, however, observe complete refolding to the all-β state in these simulations, suggesting that a change in β3-β4 orientation aids in, but is not sufficient for, domain dissociation. In addition, we study the reverse fold switch in which RfaH returns from a domain-open all-β state to its domain-closed all-α state. We observe a T-dependent transition rate; fold switching is slow at low T, where the CTD tends to be kinetically trapped in its all-β state, and at high-T, where the all-α state becomes unstable. Consequently, our simulations suggest an optimal T at which fold switching is most rapid. At this T, the stabilities of both folds are reduced. Overall, our study suggests that both inter-domain interactions and conformational changes within NTD may be important for the proper functioning of RfaH.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.26755\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26755","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
RfaH 是一种双链变构蛋白,参与转录调控和翻译启动。为了实现其双重功能,RfaH 依赖于两种耦合的结构变化:结构域解离和折叠转换。在自由状态下,RfaH 的 C 端结构域(CTD)采用全α折叠,并与 N 端结构域(NTD)紧密结合。与 RNA 聚合酶(RNAP)结合后,这两个结构域解离,CTD 转变为全β折叠,而 NTD 基本保持不变,但并非完全不变。我们检验了位于 NTD 上的扩展 β 发夹(β3-β4)的构象变化有助于触发结构域解离的观点。为此,我们利用同源建模构建了一个结构 H1,它与游离的 RfaH 相似,但具有重塑的 β3-β4 发夹。然后,我们使用一个基于物理的全原子模型,并增强了基于双盆结构的势能,来模拟由处于固定折叠构象的 CTD 和 NTD 的热折叠所驱动的结构域分离。我们将模型应用于自由 RfaH 和 H1。对于 H1,我们发现,与自由 RfaH 相比,CTD 表现出较低的稳定性,结构域在较低温度 T 时解离,这与我们的假设相符。然而,在这些模拟中,我们并没有观察到完全折叠到全β状态,这表明β3-β4取向的变化有助于但不足以导致结构域解离。此外,我们还研究了 RfaH 从结构域开放的全β态返回到结构域封闭的全α态的反向折叠转换。我们观察到折叠转换速度与 T 值有关;在低 T 值时,折叠转换速度较慢,CTD 往往被动力学困在全β态;而在高 T 值时,全α态变得不稳定。因此,我们的模拟结果表明了折叠切换最迅速的最佳 T 值。在此温度下,两种折叠的稳定性都会降低。总之,我们的研究表明,NTD 内部的域间相互作用和构象变化对于 RfaH 的正常功能可能都很重要。
Impact of N-Terminal Domain Conformation and Domain Interactions on RfaH Fold Switching.
RfaH is a two-domain metamorphic protein involved in transcription regulation and translation initiation. To carry out its dual functions, RfaH relies on two coupled structural changes: Domain dissociation and fold switching. In the free state, the C-terminal domain (CTD) of RfaH adopts an all-α fold and is tightly associated with the N-terminal domain (NTD). Upon binding to RNA polymerase (RNAP), the domains dissociate and the CTD transforms into an all-β fold while the NTD remains largely, but not entirely, unchanged. We test the idea that a change in the conformation of an extended β-hairpin (β3-β4) located on the NTD, helps trigger domain dissociation. To this end, we use homology modeling to construct a structure, H1, which is similar to free RfaH but with a remodeled β3-β4 hairpin. We then use an all-atom physics-based model enhanced with a dual basin structure-based potential to simulate domain separation driven by the thermal unfolding of the CTD with NTD in a fixed, folded conformation. We apply our model to both free RfaH and H1. For H1 we find, in line with our hypothesis, that the CTD exhibits lower stability and the domains dissociate at a lower temperature T, as compared to free RfaH. We do not, however, observe complete refolding to the all-β state in these simulations, suggesting that a change in β3-β4 orientation aids in, but is not sufficient for, domain dissociation. In addition, we study the reverse fold switch in which RfaH returns from a domain-open all-β state to its domain-closed all-α state. We observe a T-dependent transition rate; fold switching is slow at low T, where the CTD tends to be kinetically trapped in its all-β state, and at high-T, where the all-α state becomes unstable. Consequently, our simulations suggest an optimal T at which fold switching is most rapid. At this T, the stabilities of both folds are reduced. Overall, our study suggests that both inter-domain interactions and conformational changes within NTD may be important for the proper functioning of RfaH.