开发用于切开卵母细胞电生理学的数字放大器系统。

IF 2.4 Q3 BIOPHYSICS Biophysical reports Pub Date : 2024-12-11 Epub Date: 2024-10-15 DOI:10.1016/j.bpr.2024.100185
Lucas J Koerner, Ian Delgadillo Bonequi, Ian S K Shogren, Abraham Stroschein, Jordan Haag, Linda M Boland
{"title":"开发用于切开卵母细胞电生理学的数字放大器系统。","authors":"Lucas J Koerner, Ian Delgadillo Bonequi, Ian S K Shogren, Abraham Stroschein, Jordan Haag, Linda M Boland","doi":"10.1016/j.bpr.2024.100185","DOIUrl":null,"url":null,"abstract":"<p><p>The cut-open oocyte Vaseline gap technique is a powerful electrophysiological method for the characterization of ion channels. However, traditional amplifiers for cut-open oocyte Vaseline gap are labor intensive and require significant user expertise. We introduce an innovative, open-source digital amplifier system with high-speed digitization and software-controlled electronics for computer-driven automation. This system compares well to existing commercial systems in terms of conventional specifications of step response (current peak at 25μs and decay of 36μs time constant), current noise (1.0 nA at 3-kHz bandwidth), and dynamic range (96.9 dB). Additionally, it unlocks new methods through close integration of the amplifier and software, including machine-learning techniques for tuning capacitive compensation waveforms, achieving a 100-fold suppression of mean-squared transient current, and impedance measurement methods to identify system components such as membrane capacitance and electrode resistances. For future extensions, the design has unique attributes such as real-time digital signal processing for feedback, multiple input and multiple output, and allows for user customization. By providing open-source access to the circuit board designs, control software, and field-programmable gate array code on GitHub, this approach aims to foster cross-disciplinary collaboration and facilitate instrument customization enabling previously inaccessible electrophysiology experiments.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":" ","pages":"100185"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549981/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of a digital amplifier system for cut-open oocyte electrophysiology.\",\"authors\":\"Lucas J Koerner, Ian Delgadillo Bonequi, Ian S K Shogren, Abraham Stroschein, Jordan Haag, Linda M Boland\",\"doi\":\"10.1016/j.bpr.2024.100185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cut-open oocyte Vaseline gap technique is a powerful electrophysiological method for the characterization of ion channels. However, traditional amplifiers for cut-open oocyte Vaseline gap are labor intensive and require significant user expertise. We introduce an innovative, open-source digital amplifier system with high-speed digitization and software-controlled electronics for computer-driven automation. This system compares well to existing commercial systems in terms of conventional specifications of step response (current peak at 25μs and decay of 36μs time constant), current noise (1.0 nA at 3-kHz bandwidth), and dynamic range (96.9 dB). Additionally, it unlocks new methods through close integration of the amplifier and software, including machine-learning techniques for tuning capacitive compensation waveforms, achieving a 100-fold suppression of mean-squared transient current, and impedance measurement methods to identify system components such as membrane capacitance and electrode resistances. For future extensions, the design has unique attributes such as real-time digital signal processing for feedback, multiple input and multiple output, and allows for user customization. By providing open-source access to the circuit board designs, control software, and field-programmable gate array code on GitHub, this approach aims to foster cross-disciplinary collaboration and facilitate instrument customization enabling previously inaccessible electrophysiology experiments.</p>\",\"PeriodicalId\":72402,\"journal\":{\"name\":\"Biophysical reports\",\"volume\":\" \",\"pages\":\"100185\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549981/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpr.2024.100185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2024.100185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

切开卵母细胞凡士林间隙(COVG)技术是表征离子通道的一种强大的电生理方法。然而,用于 COVG 的传统放大器耗费大量人力,而且需要用户具备丰富的专业知识。我们介绍了一种创新的开源数字放大器系统,该系统具有高速数字化和软件控制电子设备,可实现计算机驱动的自动化。该系统在阶跃响应(25°μs 时的电流峰值和 36°μ时间常数的衰减)、电流噪声(3 kHz 带宽时为 1.0 nA)和动态范围(96.9 dB)等传统规格方面均优于现有的商业系统。此外,它还通过放大器和软件的紧密集成释放出新的方法,包括用于调整电容补偿波形的机器学习技术,实现了 100 倍的均方瞬态电流抑制,以及用于识别膜电容和电极电阻等系统组件的阻抗测量方法。对于未来的扩展,该设计具有独特的属性,如用于反馈的实时数字信号处理、多输入和多输出,并允许用户定制。通过在 GitHub 上提供对电路板设计、控制软件和 FPGA 代码的开源访问,这种方法旨在促进跨学科合作,推动仪器定制,从而实现以前无法实现的电生理学实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a digital amplifier system for cut-open oocyte electrophysiology.

The cut-open oocyte Vaseline gap technique is a powerful electrophysiological method for the characterization of ion channels. However, traditional amplifiers for cut-open oocyte Vaseline gap are labor intensive and require significant user expertise. We introduce an innovative, open-source digital amplifier system with high-speed digitization and software-controlled electronics for computer-driven automation. This system compares well to existing commercial systems in terms of conventional specifications of step response (current peak at 25μs and decay of 36μs time constant), current noise (1.0 nA at 3-kHz bandwidth), and dynamic range (96.9 dB). Additionally, it unlocks new methods through close integration of the amplifier and software, including machine-learning techniques for tuning capacitive compensation waveforms, achieving a 100-fold suppression of mean-squared transient current, and impedance measurement methods to identify system components such as membrane capacitance and electrode resistances. For future extensions, the design has unique attributes such as real-time digital signal processing for feedback, multiple input and multiple output, and allows for user customization. By providing open-source access to the circuit board designs, control software, and field-programmable gate array code on GitHub, this approach aims to foster cross-disciplinary collaboration and facilitate instrument customization enabling previously inaccessible electrophysiology experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
期刊最新文献
Towards measurements of absolute membrane potential in Bacillus subtilis using fluorescence lifetime. Correlating Disordered Activation Domain Ensembles with Gene Expression Levels. DiffMAP-GP: Continuous 2D Diffusion Maps from Particle Trajectories without Data Binning using Gaussian Processes. Growing bacterial colonies harness emergent genealogical demixing to regulate organizational entropy. An effective drift-diffusion model for pandemic propagation and uncertainty prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1