Fe(II)/O2/tripolyphosphate 系统中活性氧生成和污染物降解的 pH 值依赖性。

Chengwu Zhang, Anqi Yang, Bing Qin, Wei Zhao, Chuipeng Kong, Chuanyu Qin
{"title":"Fe(II)/O2/tripolyphosphate 系统中活性氧生成和污染物降解的 pH 值依赖性。","authors":"Chengwu Zhang, Anqi Yang, Bing Qin, Wei Zhao, Chuipeng Kong, Chuanyu Qin","doi":"10.1016/j.jhazmat.2024.136174","DOIUrl":null,"url":null,"abstract":"<p><p>It has been reported that tripolyphosphate (TPP) can effectively enhance the activation of O<sub>2</sub> by Fe(II) to remove organic pollutants in the environment. However, the influence of solution pH on the generation and conversion of reactive oxygen species (ROS) and their degradation of pollutants in the Fe(II)/O<sub>2</sub>/TPP system needs further investigation. In this study, we demonstrated that O<sub>2</sub><sup>•-</sup> and •OH were the main ROS responsible for degradation in the system at different pH conditions, and their formation rates were calculated using a steady-state model. Experiments combined with density functional theory (DFT) calculations showed that the p-nitrophenol (PNP) degradation pathway in the Fe(II)/O<sub>2</sub>/TPP system is regulated by solution pH. Specifically, at pH = 3, the existence of Fe(II) in the solution is dominated by [Fe(II)(HTPP)<sub>2</sub>]<sup>2-</sup>, which leads to a rapid conversion from O<sub>2</sub> and HO<sub>2</sub>• to generate •OH, and PNP is primarily oxidatively degraded. However, at pH = 5/7, [Fe(II)(TPP)<sub>2</sub>]<sup>4-</sup> is taking the lead with which O<sub>2</sub><sup>•-</sup> is accumulated in the solution due to the slow conversion to •OH in this condition, and the PNP is mainly reductively degraded. This study proposes a new strategy to achieve the targeted oxidative/reductive removal of different types of pollutants by simply varying the solution pH in the Fe(II)/O<sub>2</sub>/TPP system.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136174"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pH dependence of reactive oxygen species generation and pollutant degradation in Fe(II)/O<sub>2</sub>/tripolyphosphate system.\",\"authors\":\"Chengwu Zhang, Anqi Yang, Bing Qin, Wei Zhao, Chuipeng Kong, Chuanyu Qin\",\"doi\":\"10.1016/j.jhazmat.2024.136174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It has been reported that tripolyphosphate (TPP) can effectively enhance the activation of O<sub>2</sub> by Fe(II) to remove organic pollutants in the environment. However, the influence of solution pH on the generation and conversion of reactive oxygen species (ROS) and their degradation of pollutants in the Fe(II)/O<sub>2</sub>/TPP system needs further investigation. In this study, we demonstrated that O<sub>2</sub><sup>•-</sup> and •OH were the main ROS responsible for degradation in the system at different pH conditions, and their formation rates were calculated using a steady-state model. Experiments combined with density functional theory (DFT) calculations showed that the p-nitrophenol (PNP) degradation pathway in the Fe(II)/O<sub>2</sub>/TPP system is regulated by solution pH. Specifically, at pH = 3, the existence of Fe(II) in the solution is dominated by [Fe(II)(HTPP)<sub>2</sub>]<sup>2-</sup>, which leads to a rapid conversion from O<sub>2</sub> and HO<sub>2</sub>• to generate •OH, and PNP is primarily oxidatively degraded. However, at pH = 5/7, [Fe(II)(TPP)<sub>2</sub>]<sup>4-</sup> is taking the lead with which O<sub>2</sub><sup>•-</sup> is accumulated in the solution due to the slow conversion to •OH in this condition, and the PNP is mainly reductively degraded. This study proposes a new strategy to achieve the targeted oxidative/reductive removal of different types of pollutants by simply varying the solution pH in the Fe(II)/O<sub>2</sub>/TPP system.</p>\",\"PeriodicalId\":94082,\"journal\":{\"name\":\"Journal of hazardous materials\",\"volume\":\"480 \",\"pages\":\"136174\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.136174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

据报道,三聚磷酸钠(TPP)能有效增强铁(II)对氧气的活化作用,从而去除环境中的有机污染物。然而,在 Fe(II)/O2/TPP 系统中,溶液 pH 值对活性氧(ROS)的生成和转化及其对污染物降解的影响还需要进一步研究。在本研究中,我们证明了在不同的 pH 值条件下,O2-- 和 -OH 是该体系中导致降解的主要 ROS,并利用稳态模型计算了它们的形成率。实验结合密度泛函理论(DFT)计算表明,Fe(II)/O2/TPP体系中对硝基苯酚(PNP)的降解途径受溶液pH值的调节。具体来说,在 pH = 3 时,溶液中的 Fe(II) 以 [Fe(II)(HTPP)2]2- 为主,导致 O2 和 HO2- 快速转化生成 -OH,PNP 主要被氧化降解。然而,在 pH = 5/7 时,[Fe(II)(TPP)2]4- 起主导作用,由于在此条件下转化为 -OH 的速度较慢,溶液中积累了 O2-,PNP 主要被还原降解。本研究提出了一种新策略,只需改变 Fe(II)/O2/TPP 体系中溶液的 pH 值,就能有针对性地氧化/还原去除不同类型的污染物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pH dependence of reactive oxygen species generation and pollutant degradation in Fe(II)/O2/tripolyphosphate system.

It has been reported that tripolyphosphate (TPP) can effectively enhance the activation of O2 by Fe(II) to remove organic pollutants in the environment. However, the influence of solution pH on the generation and conversion of reactive oxygen species (ROS) and their degradation of pollutants in the Fe(II)/O2/TPP system needs further investigation. In this study, we demonstrated that O2•- and •OH were the main ROS responsible for degradation in the system at different pH conditions, and their formation rates were calculated using a steady-state model. Experiments combined with density functional theory (DFT) calculations showed that the p-nitrophenol (PNP) degradation pathway in the Fe(II)/O2/TPP system is regulated by solution pH. Specifically, at pH = 3, the existence of Fe(II) in the solution is dominated by [Fe(II)(HTPP)2]2-, which leads to a rapid conversion from O2 and HO2• to generate •OH, and PNP is primarily oxidatively degraded. However, at pH = 5/7, [Fe(II)(TPP)2]4- is taking the lead with which O2•- is accumulated in the solution due to the slow conversion to •OH in this condition, and the PNP is mainly reductively degraded. This study proposes a new strategy to achieve the targeted oxidative/reductive removal of different types of pollutants by simply varying the solution pH in the Fe(II)/O2/TPP system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enrichment and catalysis effect of 2D/2D g-C3N4/Ti3C2 for promoting organic matter degradation and heavy metal reduction in plasma systems: Unveiling the promotion and redox mechanism. Variation in photoactivity of dissolved black carbon during the fractionation process and the role in the photodegradation of various antibiotics. Antimony-bearing schwertmannite transformation to goethite: A driver of antimony mobilization in acid mine drainage. Assessing the stereoselective bioactivity and biotoxicity of penthiopyrad in soil environment for efficacy improvement and hazard reduction. Gene biomarkers in estuarine oysters indicate pollution profiles of metals, brominated flame retardants, and poly- and perfluoroalkyl substances in and near the Laizhou Bay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1