具有增强线性和突触可塑性的柔性 TiO2-WO3-x 混合记忆晶体管,可用于神经形态计算中的精确权重调整

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC npj Flexible Electronics Pub Date : 2024-10-22 DOI:10.1038/s41528-024-00356-6
Jianyong Pan, Hao Kan, Zhaorui Liu, Song Gao, Enxiu Wu, Yang Li, Chunwei Zhang
{"title":"具有增强线性和突触可塑性的柔性 TiO2-WO3-x 混合记忆晶体管,可用于神经形态计算中的精确权重调整","authors":"Jianyong Pan, Hao Kan, Zhaorui Liu, Song Gao, Enxiu Wu, Yang Li, Chunwei Zhang","doi":"10.1038/s41528-024-00356-6","DOIUrl":null,"url":null,"abstract":"Tungsten oxide (WO3)-based memristors show promising applications in neuromorphic computing. However, single-layer WO3 memristors suffer from issues such as weak memory performance and nonlinear conductance variations. In this work, a functional layer based on the hybrids of WO3−x and TiO2 is proposed for constructing flexible memristors featuring outstanding synaptic characteristics. Applying diverse electrical stimulations to the memristor enables a range of synaptic functions, elucidating its conduction mechanism through the conductive filament model. The incorporation of TiO2 not only enhances the memristor’s memory characteristics but makes its conductance more linear, symmetrical and uniform during the long-term changes. Furthermore, in view of the enhanced device performance by TiO2 doping, the potential of this device for simple behavioral simulation and processing of complex computing problems is explored. The “learning-forgetting-relearning” characteristics and device integrability are visually demonstrated. Applying the device to a convolutional neural network, the recognition accuracy of MNIST handwritten digits reaches 98.7%.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-12"},"PeriodicalIF":12.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00356-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Flexible TiO2-WO3−x hybrid memristor with enhanced linearity and synaptic plasticity for precise weight tuning in neuromorphic computing\",\"authors\":\"Jianyong Pan, Hao Kan, Zhaorui Liu, Song Gao, Enxiu Wu, Yang Li, Chunwei Zhang\",\"doi\":\"10.1038/s41528-024-00356-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tungsten oxide (WO3)-based memristors show promising applications in neuromorphic computing. However, single-layer WO3 memristors suffer from issues such as weak memory performance and nonlinear conductance variations. In this work, a functional layer based on the hybrids of WO3−x and TiO2 is proposed for constructing flexible memristors featuring outstanding synaptic characteristics. Applying diverse electrical stimulations to the memristor enables a range of synaptic functions, elucidating its conduction mechanism through the conductive filament model. The incorporation of TiO2 not only enhances the memristor’s memory characteristics but makes its conductance more linear, symmetrical and uniform during the long-term changes. Furthermore, in view of the enhanced device performance by TiO2 doping, the potential of this device for simple behavioral simulation and processing of complex computing problems is explored. The “learning-forgetting-relearning” characteristics and device integrability are visually demonstrated. Applying the device to a convolutional neural network, the recognition accuracy of MNIST handwritten digits reaches 98.7%.\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41528-024-00356-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41528-024-00356-6\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00356-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于氧化钨(WO3)的忆阻器在神经形态计算中的应用前景广阔。然而,单层 WO3 记忆晶体管存在记忆性能弱和非线性电导变化等问题。本研究提出了一种基于 WO3-x 和 TiO2 混合体的功能层,用于构建具有出色突触特性的柔性忆阻器。对该忆阻器施加不同的电刺激可实现一系列突触功能,并通过导电丝模型阐明了其传导机制。二氧化钛的加入不仅增强了忆阻器的记忆特性,还使其在长期变化过程中的传导更加线性、对称和均匀。此外,鉴于掺杂 TiO2 增强了器件性能,该器件在简单行为模拟和复杂计算问题处理方面的潜力也得到了探索。该器件的 "学习-遗忘-再学习 "特性和可集成性得到了直观的展示。将该器件应用于卷积神经网络,MNIST 手写数字的识别准确率达到 98.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexible TiO2-WO3−x hybrid memristor with enhanced linearity and synaptic plasticity for precise weight tuning in neuromorphic computing
Tungsten oxide (WO3)-based memristors show promising applications in neuromorphic computing. However, single-layer WO3 memristors suffer from issues such as weak memory performance and nonlinear conductance variations. In this work, a functional layer based on the hybrids of WO3−x and TiO2 is proposed for constructing flexible memristors featuring outstanding synaptic characteristics. Applying diverse electrical stimulations to the memristor enables a range of synaptic functions, elucidating its conduction mechanism through the conductive filament model. The incorporation of TiO2 not only enhances the memristor’s memory characteristics but makes its conductance more linear, symmetrical and uniform during the long-term changes. Furthermore, in view of the enhanced device performance by TiO2 doping, the potential of this device for simple behavioral simulation and processing of complex computing problems is explored. The “learning-forgetting-relearning” characteristics and device integrability are visually demonstrated. Applying the device to a convolutional neural network, the recognition accuracy of MNIST handwritten digits reaches 98.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
期刊最新文献
Kinetic liquid metal synthesis of flexible 2D conductive oxides for multimodal wearable sensing Autonomous self-healing in a stretchable polybutadiene-based urethane and eutectic gallium indium conductive composite Tailoring threshold voltage of R2R printed SWCNT thin film transistors for realizing 4 bit ALU Flash synthesis of high-performance and color-tunable copper(I)-based cluster scintillators for efficient dynamic X-ray imaging Full textile-based body-coupled electrical stimulation for wireless, battery-free, and wearable bioelectronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1