Xin Wang , Hui Peng , Huan Zheng , Zhiyuan Liu , Kanjun Sun , Guofu Ma , Ziqiang Lei
{"title":"弱溶解效应和分子富集层诱导的贫水亥姆霍兹层促进高度稳定的锌阳极","authors":"Xin Wang , Hui Peng , Huan Zheng , Zhiyuan Liu , Kanjun Sun , Guofu Ma , Ziqiang Lei","doi":"10.1016/j.ensm.2024.103856","DOIUrl":null,"url":null,"abstract":"<div><div>The advancement of aqueous Zn-based energy storage systems encounters major challenges due to the occurrence of side reactions and the growth of dendrites caused by the highly active nature of water in the aqueous electrolyte. Herein, a zwitterion additive named sulfonated amphoteric betaine (referred to as DMAPS) regulates the Zn<sup>2+</sup> electrolyte environment through a weak solvation effect to promote highly stable Zn anodes. The inherently occurring anionic (-SO<sub>3</sub><sup>-</sup>) and cationic (-NR<sub>4</sub><sup>+</sup>) counterions in the DMAPS chain can be effectively separated under an external electric field to enable the creation of distinct ion migration pathways, thereby significantly enhancing the transportation of electrolyte ions. Moreover, DMAPS can be adsorbed onto the surface of Zn anode to form a H<sub>2</sub>O-poor Helmholtz layer, which can serve as a protective barrier to suppress corrosion of the Zn anode by free H<sub>2</sub>O and inhibits the formation of differential electric field to facilitate the directional deposition of Zn<sup>2+</sup>. In addition, density functional theory (DFT) and molecular dynamics (MD) further assisted in demonstrating the intrinsic mechanism of the reconstruction of the solvated sheath structure of Zn<sup>2+</sup> by DMAPS. As a result, the Zn//Zn symmetric cell in ZnSO<sub>4</sub>+DMAPS solution can be cycled steadily for 2100 h at a current density of 1 mA cm<sup>-2</sup> and 1 mAh cm<sup>-2</sup>. The assembled Zn ion hybrid capacitor with ZnSO<sub>4</sub>+DMAPS electrolyte was stably cycled for 20,000 cycles with 90% capacity retention at 5 A g<sup>-1</sup>.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"73 ","pages":"Article 103856"},"PeriodicalIF":18.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak solvation effects and molecular-rich layers induced water-poor Helmholtz layers boost highly stable Zn anode\",\"authors\":\"Xin Wang , Hui Peng , Huan Zheng , Zhiyuan Liu , Kanjun Sun , Guofu Ma , Ziqiang Lei\",\"doi\":\"10.1016/j.ensm.2024.103856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The advancement of aqueous Zn-based energy storage systems encounters major challenges due to the occurrence of side reactions and the growth of dendrites caused by the highly active nature of water in the aqueous electrolyte. Herein, a zwitterion additive named sulfonated amphoteric betaine (referred to as DMAPS) regulates the Zn<sup>2+</sup> electrolyte environment through a weak solvation effect to promote highly stable Zn anodes. The inherently occurring anionic (-SO<sub>3</sub><sup>-</sup>) and cationic (-NR<sub>4</sub><sup>+</sup>) counterions in the DMAPS chain can be effectively separated under an external electric field to enable the creation of distinct ion migration pathways, thereby significantly enhancing the transportation of electrolyte ions. Moreover, DMAPS can be adsorbed onto the surface of Zn anode to form a H<sub>2</sub>O-poor Helmholtz layer, which can serve as a protective barrier to suppress corrosion of the Zn anode by free H<sub>2</sub>O and inhibits the formation of differential electric field to facilitate the directional deposition of Zn<sup>2+</sup>. In addition, density functional theory (DFT) and molecular dynamics (MD) further assisted in demonstrating the intrinsic mechanism of the reconstruction of the solvated sheath structure of Zn<sup>2+</sup> by DMAPS. As a result, the Zn//Zn symmetric cell in ZnSO<sub>4</sub>+DMAPS solution can be cycled steadily for 2100 h at a current density of 1 mA cm<sup>-2</sup> and 1 mAh cm<sup>-2</sup>. The assembled Zn ion hybrid capacitor with ZnSO<sub>4</sub>+DMAPS electrolyte was stably cycled for 20,000 cycles with 90% capacity retention at 5 A g<sup>-1</sup>.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"73 \",\"pages\":\"Article 103856\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829724006822\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724006822","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The advancement of aqueous Zn-based energy storage systems encounters major challenges due to the occurrence of side reactions and the growth of dendrites caused by the highly active nature of water in the aqueous electrolyte. Herein, a zwitterion additive named sulfonated amphoteric betaine (referred to as DMAPS) regulates the Zn2+ electrolyte environment through a weak solvation effect to promote highly stable Zn anodes. The inherently occurring anionic (-SO3-) and cationic (-NR4+) counterions in the DMAPS chain can be effectively separated under an external electric field to enable the creation of distinct ion migration pathways, thereby significantly enhancing the transportation of electrolyte ions. Moreover, DMAPS can be adsorbed onto the surface of Zn anode to form a H2O-poor Helmholtz layer, which can serve as a protective barrier to suppress corrosion of the Zn anode by free H2O and inhibits the formation of differential electric field to facilitate the directional deposition of Zn2+. In addition, density functional theory (DFT) and molecular dynamics (MD) further assisted in demonstrating the intrinsic mechanism of the reconstruction of the solvated sheath structure of Zn2+ by DMAPS. As a result, the Zn//Zn symmetric cell in ZnSO4+DMAPS solution can be cycled steadily for 2100 h at a current density of 1 mA cm-2 and 1 mAh cm-2. The assembled Zn ion hybrid capacitor with ZnSO4+DMAPS electrolyte was stably cycled for 20,000 cycles with 90% capacity retention at 5 A g-1.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.