{"title":"通过缓和相变探索具有高储能性能的反铁电体薄膜","authors":"Tianfu Zhang, Yangyang Si, Xudong Li, Yijie Li, Tao Wang, Qinghua Zhang, Yunlong Tang, Zuhuang Chen","doi":"10.1063/5.0226576","DOIUrl":null,"url":null,"abstract":"Anti-ferroelectric thin films are renowned for their signature double hysteresis loops and sheds light on the distinguished energy storage capabilities of dielectric capacitors in modern electronic devices. However, anti-ferroelectric capacitors are still facing the dual challenges of low energy density and efficiency to achieve state-of-the-art performance. Their large hysteresis and sharp first-order phase transition usually results in a low energy storage efficiency and easy breakdown, severely obscuring its future application. In this study, we demonstrate that anti-ferroelectric (Pb0.97La0.02)(Zr1−xSnx)O3 epitaxial thin films exhibit enhanced energy storage performance through local structural heterogeneity to moderate the first-order phase transition by calculating the corresponding polarization as a function of switching time for the first time. The films exhibit remarkable enhanced breakdown strength (∼3.47 MV/cm, ∼5 times the value for PbZrO3) and energy storage performance. Our endeavors have culminated in the ingenious formulation of a novel strategy, namely, the postponement of polarization processes, thereby elevating the breakdown strength and total energy storage performance. This landmark achievement has unveiled a fresh vista of investigative opportunities for advancing the energy storage prowess of electric dielectrics.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"30 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring anti-ferroelectric thin films with high energy storage performance by moderating phase transition\",\"authors\":\"Tianfu Zhang, Yangyang Si, Xudong Li, Yijie Li, Tao Wang, Qinghua Zhang, Yunlong Tang, Zuhuang Chen\",\"doi\":\"10.1063/5.0226576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anti-ferroelectric thin films are renowned for their signature double hysteresis loops and sheds light on the distinguished energy storage capabilities of dielectric capacitors in modern electronic devices. However, anti-ferroelectric capacitors are still facing the dual challenges of low energy density and efficiency to achieve state-of-the-art performance. Their large hysteresis and sharp first-order phase transition usually results in a low energy storage efficiency and easy breakdown, severely obscuring its future application. In this study, we demonstrate that anti-ferroelectric (Pb0.97La0.02)(Zr1−xSnx)O3 epitaxial thin films exhibit enhanced energy storage performance through local structural heterogeneity to moderate the first-order phase transition by calculating the corresponding polarization as a function of switching time for the first time. The films exhibit remarkable enhanced breakdown strength (∼3.47 MV/cm, ∼5 times the value for PbZrO3) and energy storage performance. Our endeavors have culminated in the ingenious formulation of a novel strategy, namely, the postponement of polarization processes, thereby elevating the breakdown strength and total energy storage performance. This landmark achievement has unveiled a fresh vista of investigative opportunities for advancing the energy storage prowess of electric dielectrics.\",\"PeriodicalId\":8200,\"journal\":{\"name\":\"Applied physics reviews\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physics reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0226576\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0226576","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Exploring anti-ferroelectric thin films with high energy storage performance by moderating phase transition
Anti-ferroelectric thin films are renowned for their signature double hysteresis loops and sheds light on the distinguished energy storage capabilities of dielectric capacitors in modern electronic devices. However, anti-ferroelectric capacitors are still facing the dual challenges of low energy density and efficiency to achieve state-of-the-art performance. Their large hysteresis and sharp first-order phase transition usually results in a low energy storage efficiency and easy breakdown, severely obscuring its future application. In this study, we demonstrate that anti-ferroelectric (Pb0.97La0.02)(Zr1−xSnx)O3 epitaxial thin films exhibit enhanced energy storage performance through local structural heterogeneity to moderate the first-order phase transition by calculating the corresponding polarization as a function of switching time for the first time. The films exhibit remarkable enhanced breakdown strength (∼3.47 MV/cm, ∼5 times the value for PbZrO3) and energy storage performance. Our endeavors have culminated in the ingenious formulation of a novel strategy, namely, the postponement of polarization processes, thereby elevating the breakdown strength and total energy storage performance. This landmark achievement has unveiled a fresh vista of investigative opportunities for advancing the energy storage prowess of electric dielectrics.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.