利用实验研究的 D18:Y6 块状异质结太阳能电池验证新型电子传输层

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Advanced Theory and Simulations Pub Date : 2024-10-22 DOI:10.1002/adts.202400725
Chandrasekar Karuppaiah, Dheebanathan Azhakanantham, Muthamizh Selvamani, Sathish Kumar Perumal, Majed A. Alotaibi, Arul Varman Kesavan
{"title":"利用实验研究的 D18:Y6 块状异质结太阳能电池验证新型电子传输层","authors":"Chandrasekar Karuppaiah, Dheebanathan Azhakanantham, Muthamizh Selvamani, Sathish Kumar Perumal, Majed A. Alotaibi, Arul Varman Kesavan","doi":"10.1002/adts.202400725","DOIUrl":null,"url":null,"abstract":"Organic solar cells (OSC) are showing steady efficiency improvement due to the development in the materials synthesis, sophisticated characterization techniques, in‐depth understanding of materials and devices. In the recent years, bulk heterojunction OSC with a non‐fullerene acceptor /polymer acceptor shows significant enhancement in efficiency (≈19%). Efficiency of the polymer acceptor OSCs is much higher than the fullerene derivative‐based acceptors. In this work, OSC simulations are done using D18 donor and Y6 acceptor bulk heterojunction as a photoactive layer. As a first step, validity of the experimental results for ITO/PEDOT:PSS/D18:Y6/PDIN/Ag structure is done. To investigate efficiency, 2,8,15‐trifluoro‐3,9,14‐tris(heptylsulfonyl)diquinoxalino[2,3‐a:2′,3′‐c]phenazine (HATNASO2C7‐Cs) electron transport layer is validated in place of PDIN in the following device structure, ITO/PEDOT:PSS/D18:Y6/HATNASO2C7‐Cs/Ag. Energy level matching of the HATNASO2C7‐Cs is well aligned compared with PDIN at the cathode interface. Device simulation optimization are carried out for various photoactive layer, ETL and HTL condition. Highest efficiency of 20.99% is obtained for ITO/PEDOT:PSS/D18:Y6/HATNASO2C7‐Cs/Ag when the HATNASO2C7‐Cs thickness, bandgap, electron affinity, carrier mobility, and defect density is matched for ≈30 nm, ≈2.8 eV, ≈4.16 eV, ≈2 × 10<jats:sup>−3</jats:sup> cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup>, and 10<jats:sup>14</jats:sup> cm<jats:sup>−3</jats:sup> respectively. Obtained results are discussed in details and results will be helpful for preliminary understanding of the system.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"8 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validating the Novel Electron Transport Layer with the Use of Experimentally Studied D18:Y6 Bulk Heterojunction Solar Cell\",\"authors\":\"Chandrasekar Karuppaiah, Dheebanathan Azhakanantham, Muthamizh Selvamani, Sathish Kumar Perumal, Majed A. Alotaibi, Arul Varman Kesavan\",\"doi\":\"10.1002/adts.202400725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic solar cells (OSC) are showing steady efficiency improvement due to the development in the materials synthesis, sophisticated characterization techniques, in‐depth understanding of materials and devices. In the recent years, bulk heterojunction OSC with a non‐fullerene acceptor /polymer acceptor shows significant enhancement in efficiency (≈19%). Efficiency of the polymer acceptor OSCs is much higher than the fullerene derivative‐based acceptors. In this work, OSC simulations are done using D18 donor and Y6 acceptor bulk heterojunction as a photoactive layer. As a first step, validity of the experimental results for ITO/PEDOT:PSS/D18:Y6/PDIN/Ag structure is done. To investigate efficiency, 2,8,15‐trifluoro‐3,9,14‐tris(heptylsulfonyl)diquinoxalino[2,3‐a:2′,3′‐c]phenazine (HATNASO2C7‐Cs) electron transport layer is validated in place of PDIN in the following device structure, ITO/PEDOT:PSS/D18:Y6/HATNASO2C7‐Cs/Ag. Energy level matching of the HATNASO2C7‐Cs is well aligned compared with PDIN at the cathode interface. Device simulation optimization are carried out for various photoactive layer, ETL and HTL condition. Highest efficiency of 20.99% is obtained for ITO/PEDOT:PSS/D18:Y6/HATNASO2C7‐Cs/Ag when the HATNASO2C7‐Cs thickness, bandgap, electron affinity, carrier mobility, and defect density is matched for ≈30 nm, ≈2.8 eV, ≈4.16 eV, ≈2 × 10<jats:sup>−3</jats:sup> cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup>, and 10<jats:sup>14</jats:sup> cm<jats:sup>−3</jats:sup> respectively. Obtained results are discussed in details and results will be helpful for preliminary understanding of the system.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202400725\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400725","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

有机太阳能电池(OSC)效率的稳步提高得益于材料合成技术的发展、复杂的表征技术、对材料和器件的深入了解。近年来,使用非富勒烯受体/聚合物受体的体异质结有机太阳能电池的效率显著提高(≈19%)。聚合物受体 OSC 的效率远远高于基于富勒烯衍生物的受体。在这项工作中,使用 D18 给体和 Y6 受体体异质结作为光活性层进行了 OSC 模拟。第一步是验证 ITO/PEDOT:PSS/D18:Y6/PDIN/Ag 结构的实验结果。为了研究效率,在以下器件结构(ITO/PEDOT:PSS/D18:Y6/HATNASO2C7-Cs/Ag)中验证了 2,8,15-三氟-3,9,14-三(庚基磺酰基)二喹喔啉并[2,3-a:2′,3′-c]吩嗪(HATNASO2C7-Cs)电子传输层代替 PDIN。与阴极界面上的 PDIN 相比,HATNASO2C7-Cs 的能级匹配良好。针对不同的光活性层、ETL 和 HTL 条件进行了器件仿真优化。当 HATNASO2C7-Cs 厚度、带隙、电子亲和力、载流子迁移率和缺陷密度分别与 ≈30 nm、≈2.8 eV、≈4.16 eV、≈2 × 10-3 cm2 V-1 s-1 和 1014 cm-3 匹配时,ITO/PEDOT:PSS/D18:Y6/HATNASO2C7-Cs/Ag 的最高效率为 20.99%。详细讨论了获得的结果,这些结果将有助于对系统的初步了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Validating the Novel Electron Transport Layer with the Use of Experimentally Studied D18:Y6 Bulk Heterojunction Solar Cell
Organic solar cells (OSC) are showing steady efficiency improvement due to the development in the materials synthesis, sophisticated characterization techniques, in‐depth understanding of materials and devices. In the recent years, bulk heterojunction OSC with a non‐fullerene acceptor /polymer acceptor shows significant enhancement in efficiency (≈19%). Efficiency of the polymer acceptor OSCs is much higher than the fullerene derivative‐based acceptors. In this work, OSC simulations are done using D18 donor and Y6 acceptor bulk heterojunction as a photoactive layer. As a first step, validity of the experimental results for ITO/PEDOT:PSS/D18:Y6/PDIN/Ag structure is done. To investigate efficiency, 2,8,15‐trifluoro‐3,9,14‐tris(heptylsulfonyl)diquinoxalino[2,3‐a:2′,3′‐c]phenazine (HATNASO2C7‐Cs) electron transport layer is validated in place of PDIN in the following device structure, ITO/PEDOT:PSS/D18:Y6/HATNASO2C7‐Cs/Ag. Energy level matching of the HATNASO2C7‐Cs is well aligned compared with PDIN at the cathode interface. Device simulation optimization are carried out for various photoactive layer, ETL and HTL condition. Highest efficiency of 20.99% is obtained for ITO/PEDOT:PSS/D18:Y6/HATNASO2C7‐Cs/Ag when the HATNASO2C7‐Cs thickness, bandgap, electron affinity, carrier mobility, and defect density is matched for ≈30 nm, ≈2.8 eV, ≈4.16 eV, ≈2 × 10−3 cm2 V−1 s−1, and 1014 cm−3 respectively. Obtained results are discussed in details and results will be helpful for preliminary understanding of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
期刊最新文献
Machine-Learned Modeling for Accelerating Organic Solvent Design in Metal-Ion Batteries Topology Optimization Enabled High Performance and Easy-to-Fabricate Hybrid Photonic Crystals Pnictogen Atom Substitution to Modify the Electronic and Magnetic Properties of SiS2 Monolayer: A DFT Study Multifunctional Reconfigurable Vanadium Dioxide Integrated Metasurface for Reflection, Asymmetric Transmission and Cross-Polarization Conversion in Terahertz Region A Detailed First-Principles Study of the Structural, Elastic, Thermomechanical, and Optoelectronic Properties of Binary Rare-Earth Tritelluride NdTe3 (Adv. Theory Simul. 11/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1