通过与前列腺癌中的 Siglec-7 和 Siglec-9 结合,糖基化糖蛋白抑制了免疫细胞的杀伤作用。

Ru M Wen,Jessica C Stark,G Edward W Marti,Zenghua Fan,Aram Lyu,Fernando Jose Garcia Marques,Xiangyue Zhang,Nicholas M Riley,Sarah M Totten,Abel Bermudez,Rosalie Nolley,Hongjuan Zhao,Lawrence Fong,Edgar G Engleman,Sharon J Pitteri,Carolyn R Bertozzi,James D Brooks
{"title":"通过与前列腺癌中的 Siglec-7 和 Siglec-9 结合,糖基化糖蛋白抑制了免疫细胞的杀伤作用。","authors":"Ru M Wen,Jessica C Stark,G Edward W Marti,Zenghua Fan,Aram Lyu,Fernando Jose Garcia Marques,Xiangyue Zhang,Nicholas M Riley,Sarah M Totten,Abel Bermudez,Rosalie Nolley,Hongjuan Zhao,Lawrence Fong,Edgar G Engleman,Sharon J Pitteri,Carolyn R Bertozzi,James D Brooks","doi":"10.1172/jci180282","DOIUrl":null,"url":null,"abstract":"Prostate cancer is the second leading cause of male cancer death in the U.S. Current immune checkpoint inhibitor-based immunotherapies have improved survival for many malignancies; however, they have failed to prolong survival for prostate cancer. Siglecs (sialic acid-binding immunoglobulin-like lectins) are expressed on immune cells and regulate immune responses and function. Siglec-7 and Siglec-9 contribute to immune evasion by interacting with their ligands. However, the role of Siglec-7/9 receptors and their ligands in prostate cancer remains poorly understood. Here, we find that Siglec-7 and Siglec-9 are associated with poor prognosis in prostate cancer patients, and are highly expressed in myeloid cells, including macrophages, in prostate tumor tissues. Siglecs-7 and -9 ligands were expressed in prostate cancer cells and human prostate tumor tissues. Blocking the interactions between Siglec-7/9 and sialic acids inhibited prostate cancer xenograft growth and increased immune cell infiltration in humanized mice in vivo. Using a CRISPRi screen and mass spectrometry, we identified CD59 as a candidate Siglec-9 ligand in prostate cancer. The identification of Siglecs-7 and -9 as potential therapeutic targets, including CD59/Siglec-9 axis, opens up opportunities for immune-based interventions in prostate cancer.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sialylated glycoproteins suppress immune cell killing by binding to Siglec-7 and Siglec-9 in prostate cancer.\",\"authors\":\"Ru M Wen,Jessica C Stark,G Edward W Marti,Zenghua Fan,Aram Lyu,Fernando Jose Garcia Marques,Xiangyue Zhang,Nicholas M Riley,Sarah M Totten,Abel Bermudez,Rosalie Nolley,Hongjuan Zhao,Lawrence Fong,Edgar G Engleman,Sharon J Pitteri,Carolyn R Bertozzi,James D Brooks\",\"doi\":\"10.1172/jci180282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prostate cancer is the second leading cause of male cancer death in the U.S. Current immune checkpoint inhibitor-based immunotherapies have improved survival for many malignancies; however, they have failed to prolong survival for prostate cancer. Siglecs (sialic acid-binding immunoglobulin-like lectins) are expressed on immune cells and regulate immune responses and function. Siglec-7 and Siglec-9 contribute to immune evasion by interacting with their ligands. However, the role of Siglec-7/9 receptors and their ligands in prostate cancer remains poorly understood. Here, we find that Siglec-7 and Siglec-9 are associated with poor prognosis in prostate cancer patients, and are highly expressed in myeloid cells, including macrophages, in prostate tumor tissues. Siglecs-7 and -9 ligands were expressed in prostate cancer cells and human prostate tumor tissues. Blocking the interactions between Siglec-7/9 and sialic acids inhibited prostate cancer xenograft growth and increased immune cell infiltration in humanized mice in vivo. Using a CRISPRi screen and mass spectrometry, we identified CD59 as a candidate Siglec-9 ligand in prostate cancer. The identification of Siglecs-7 and -9 as potential therapeutic targets, including CD59/Siglec-9 axis, opens up opportunities for immune-based interventions in prostate cancer.\",\"PeriodicalId\":520097,\"journal\":{\"name\":\"The Journal of Clinical Investigation\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Clinical Investigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1172/jci180282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci180282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

前列腺癌是美国男性癌症死亡的第二大原因。目前基于免疫检查点抑制剂的免疫疗法提高了许多恶性肿瘤的生存率,但却未能延长前列腺癌患者的生存期。Siglecs(唾液酸结合免疫球蛋白样凝集素)在免疫细胞上表达,可调节免疫反应和功能。Siglec-7 和 Siglec-9 通过与其配体相互作用,有助于免疫逃避。然而,人们对 Siglec-7/9 受体及其配体在前列腺癌中的作用仍然知之甚少。在这里,我们发现 Siglec-7 和 Siglec-9 与前列腺癌患者的不良预后有关,并且在前列腺肿瘤组织的骨髓细胞(包括巨噬细胞)中高表达。Siglecs-7 和 -9 配体在前列腺癌细胞和人类前列腺肿瘤组织中均有表达。阻断 Siglec-7/9 与硅烷酸之间的相互作用可抑制前列腺癌异种移植的生长,并增加人源化小鼠体内免疫细胞的浸润。通过 CRISPRi 筛选和质谱分析,我们发现 CD59 是前列腺癌中的 Siglec-9 候选配体。Siglecs-7和-9作为潜在治疗靶点(包括CD59/Siglec-9轴)的鉴定为基于免疫的前列腺癌干预开辟了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sialylated glycoproteins suppress immune cell killing by binding to Siglec-7 and Siglec-9 in prostate cancer.
Prostate cancer is the second leading cause of male cancer death in the U.S. Current immune checkpoint inhibitor-based immunotherapies have improved survival for many malignancies; however, they have failed to prolong survival for prostate cancer. Siglecs (sialic acid-binding immunoglobulin-like lectins) are expressed on immune cells and regulate immune responses and function. Siglec-7 and Siglec-9 contribute to immune evasion by interacting with their ligands. However, the role of Siglec-7/9 receptors and their ligands in prostate cancer remains poorly understood. Here, we find that Siglec-7 and Siglec-9 are associated with poor prognosis in prostate cancer patients, and are highly expressed in myeloid cells, including macrophages, in prostate tumor tissues. Siglecs-7 and -9 ligands were expressed in prostate cancer cells and human prostate tumor tissues. Blocking the interactions between Siglec-7/9 and sialic acids inhibited prostate cancer xenograft growth and increased immune cell infiltration in humanized mice in vivo. Using a CRISPRi screen and mass spectrometry, we identified CD59 as a candidate Siglec-9 ligand in prostate cancer. The identification of Siglecs-7 and -9 as potential therapeutic targets, including CD59/Siglec-9 axis, opens up opportunities for immune-based interventions in prostate cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-classical action of Ku70 promotes Treg suppressive function through a FOXP3-dependent mechanism in lung adenocarcinoma. Frameshift mutation spectra overlap between constitutional mismatch repair deficiency tumors and Lynch syndrome tumors. MOGAT3-Mediated DAG Accumulation Drives Acquired Resistance to Anti-BRAF/EGFR Therapy in BRAFV600E-Mutant Metastatic Colorectal Cancer. Combined HDAC8 and checkpoint kinase inhibition induces tumor-selective synthetic lethality in preclinical models. Sialylated glycoproteins suppress immune cell killing by binding to Siglec-7 and Siglec-9 in prostate cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1