Benedict Borer, Eric Bi, Ryan J. Woosley, Andrew R. Babbin
{"title":"淡水和海水在环境相关温度下的表观亚硝酸解离度","authors":"Benedict Borer, Eric Bi, Ryan J. Woosley, Andrew R. Babbin","doi":"10.1002/lno.12714","DOIUrl":null,"url":null,"abstract":"Nitrite is a ubiquitous compound found across aquatic systems and an intermediate in both the oxidative and reductive metabolisms transforming fixed nitrogen in the environment. Yet, the abiotic cycling of nitrite is often overlooked in favor of biologically mediated reactions. Here we quantify the apparent acid dissociation constant (p<jats:italic>K</jats:italic><jats:sub>a</jats:sub>) between nitrous acid and its conjugate base nitrite in both freshwater and seawater systems across a range of environmentally relevant temperatures (5–35°C) using potentiometric‐based titration. In freshwater, we measured a p<jats:italic>K</jats:italic><jats:sub>a,NBS</jats:sub> of 3.14 at 25°C and a p<jats:italic>K</jats:italic><jats:sub>a,<jats:italic>T</jats:italic></jats:sub> of 2.87 for seawater at the same temperature. We quantify substantial effects of both salinity and temperature on the p<jats:italic>K</jats:italic><jats:sub>a</jats:sub>, with colder and fresher water manifesting higher values and thus a greater proportion of protonated nitrite at any given pH. Because nitrous acid is unstable and decomposes to nitric oxide, the implications for the nitrous acid dissociation constant on ecosystem function are broad.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apparent nitrous acid dissociation across environmentally relevant temperatures in freshwater and seawater\",\"authors\":\"Benedict Borer, Eric Bi, Ryan J. Woosley, Andrew R. Babbin\",\"doi\":\"10.1002/lno.12714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nitrite is a ubiquitous compound found across aquatic systems and an intermediate in both the oxidative and reductive metabolisms transforming fixed nitrogen in the environment. Yet, the abiotic cycling of nitrite is often overlooked in favor of biologically mediated reactions. Here we quantify the apparent acid dissociation constant (p<jats:italic>K</jats:italic><jats:sub>a</jats:sub>) between nitrous acid and its conjugate base nitrite in both freshwater and seawater systems across a range of environmentally relevant temperatures (5–35°C) using potentiometric‐based titration. In freshwater, we measured a p<jats:italic>K</jats:italic><jats:sub>a,NBS</jats:sub> of 3.14 at 25°C and a p<jats:italic>K</jats:italic><jats:sub>a,<jats:italic>T</jats:italic></jats:sub> of 2.87 for seawater at the same temperature. We quantify substantial effects of both salinity and temperature on the p<jats:italic>K</jats:italic><jats:sub>a</jats:sub>, with colder and fresher water manifesting higher values and thus a greater proportion of protonated nitrite at any given pH. Because nitrous acid is unstable and decomposes to nitric oxide, the implications for the nitrous acid dissociation constant on ecosystem function are broad.\",\"PeriodicalId\":18143,\"journal\":{\"name\":\"Limnology and Oceanography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/lno.12714\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/lno.12714","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Apparent nitrous acid dissociation across environmentally relevant temperatures in freshwater and seawater
Nitrite is a ubiquitous compound found across aquatic systems and an intermediate in both the oxidative and reductive metabolisms transforming fixed nitrogen in the environment. Yet, the abiotic cycling of nitrite is often overlooked in favor of biologically mediated reactions. Here we quantify the apparent acid dissociation constant (pKa) between nitrous acid and its conjugate base nitrite in both freshwater and seawater systems across a range of environmentally relevant temperatures (5–35°C) using potentiometric‐based titration. In freshwater, we measured a pKa,NBS of 3.14 at 25°C and a pKa,T of 2.87 for seawater at the same temperature. We quantify substantial effects of both salinity and temperature on the pKa, with colder and fresher water manifesting higher values and thus a greater proportion of protonated nitrite at any given pH. Because nitrous acid is unstable and decomposes to nitric oxide, the implications for the nitrous acid dissociation constant on ecosystem function are broad.
期刊介绍:
Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.