Daniel J. Ford, Jamie D. Shutler, Javier Blanco-Sacristán, Sophie Corrigan, Thomas G. Bell, Mingxi Yang, Vassilis Kitidis, Philip D. Nightingale, Ian Brown, Werenfrid Wimmer, David K. Woolf, Tânia Casal, Craig Donlon, Gavin H. Tilstone, Ian Ashton
{"title":"近表层温度梯度导致海洋二氧化碳吸收增强","authors":"Daniel J. Ford, Jamie D. Shutler, Javier Blanco-Sacristán, Sophie Corrigan, Thomas G. Bell, Mingxi Yang, Vassilis Kitidis, Philip D. Nightingale, Ian Brown, Werenfrid Wimmer, David K. Woolf, Tânia Casal, Craig Donlon, Gavin H. Tilstone, Ian Ashton","doi":"10.1038/s41561-024-01570-7","DOIUrl":null,"url":null,"abstract":"The ocean annually absorbs about a quarter of all anthropogenic carbon dioxide (CO2) emissions. Global estimates of air–sea CO2 fluxes are typically based on bulk measurements of CO2 in air and seawater and neglect the effects of vertical temperature gradients near the ocean surface. Theoretical and laboratory observations indicate that these gradients alter air–sea CO2 fluxes, because the air–sea CO2 concentration difference is highly temperature sensitive. However, in situ field evidence supporting their effect is so far lacking. Here we present independent direct air–sea CO2 fluxes alongside indirect bulk fluxes collected along repeat transects in the Atlantic Ocean (50° N to 50° S) in 2018 and 2019. We find that accounting for vertical temperature gradients reduces the difference between direct and indirect fluxes from 0.19 mmol m−2 d−1 to 0.08 mmol m−2 d−1 (N = 148). This implies an increase in the Atlantic CO2 sink of ~0.03 PgC yr−1 (~7% of the Atlantic Ocean sink). These field results validate theoretical, modelling and observational-based efforts, all of which predicted that accounting for near-surface temperature gradients would increase estimates of global ocean CO2 uptake. Accounting for this increased ocean uptake will probably require some revision to how global carbon budgets are quantified. Accounting for near-surface temperature gradients leads to estimates for annual CO2 uptake in the North Atlantic that are 7% higher, based on a comparison of eddy covariance and bulk CO2 measurements, which is consistent with theory, laboratory assessments and model analysis.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"17 11","pages":"1135-1140"},"PeriodicalIF":15.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41561-024-01570-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhanced ocean CO2 uptake due to near-surface temperature gradients\",\"authors\":\"Daniel J. Ford, Jamie D. Shutler, Javier Blanco-Sacristán, Sophie Corrigan, Thomas G. Bell, Mingxi Yang, Vassilis Kitidis, Philip D. Nightingale, Ian Brown, Werenfrid Wimmer, David K. Woolf, Tânia Casal, Craig Donlon, Gavin H. Tilstone, Ian Ashton\",\"doi\":\"10.1038/s41561-024-01570-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ocean annually absorbs about a quarter of all anthropogenic carbon dioxide (CO2) emissions. Global estimates of air–sea CO2 fluxes are typically based on bulk measurements of CO2 in air and seawater and neglect the effects of vertical temperature gradients near the ocean surface. Theoretical and laboratory observations indicate that these gradients alter air–sea CO2 fluxes, because the air–sea CO2 concentration difference is highly temperature sensitive. However, in situ field evidence supporting their effect is so far lacking. Here we present independent direct air–sea CO2 fluxes alongside indirect bulk fluxes collected along repeat transects in the Atlantic Ocean (50° N to 50° S) in 2018 and 2019. We find that accounting for vertical temperature gradients reduces the difference between direct and indirect fluxes from 0.19 mmol m−2 d−1 to 0.08 mmol m−2 d−1 (N = 148). This implies an increase in the Atlantic CO2 sink of ~0.03 PgC yr−1 (~7% of the Atlantic Ocean sink). These field results validate theoretical, modelling and observational-based efforts, all of which predicted that accounting for near-surface temperature gradients would increase estimates of global ocean CO2 uptake. Accounting for this increased ocean uptake will probably require some revision to how global carbon budgets are quantified. Accounting for near-surface temperature gradients leads to estimates for annual CO2 uptake in the North Atlantic that are 7% higher, based on a comparison of eddy covariance and bulk CO2 measurements, which is consistent with theory, laboratory assessments and model analysis.\",\"PeriodicalId\":19053,\"journal\":{\"name\":\"Nature Geoscience\",\"volume\":\"17 11\",\"pages\":\"1135-1140\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41561-024-01570-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41561-024-01570-7\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41561-024-01570-7","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced ocean CO2 uptake due to near-surface temperature gradients
The ocean annually absorbs about a quarter of all anthropogenic carbon dioxide (CO2) emissions. Global estimates of air–sea CO2 fluxes are typically based on bulk measurements of CO2 in air and seawater and neglect the effects of vertical temperature gradients near the ocean surface. Theoretical and laboratory observations indicate that these gradients alter air–sea CO2 fluxes, because the air–sea CO2 concentration difference is highly temperature sensitive. However, in situ field evidence supporting their effect is so far lacking. Here we present independent direct air–sea CO2 fluxes alongside indirect bulk fluxes collected along repeat transects in the Atlantic Ocean (50° N to 50° S) in 2018 and 2019. We find that accounting for vertical temperature gradients reduces the difference between direct and indirect fluxes from 0.19 mmol m−2 d−1 to 0.08 mmol m−2 d−1 (N = 148). This implies an increase in the Atlantic CO2 sink of ~0.03 PgC yr−1 (~7% of the Atlantic Ocean sink). These field results validate theoretical, modelling and observational-based efforts, all of which predicted that accounting for near-surface temperature gradients would increase estimates of global ocean CO2 uptake. Accounting for this increased ocean uptake will probably require some revision to how global carbon budgets are quantified. Accounting for near-surface temperature gradients leads to estimates for annual CO2 uptake in the North Atlantic that are 7% higher, based on a comparison of eddy covariance and bulk CO2 measurements, which is consistent with theory, laboratory assessments and model analysis.
期刊介绍:
Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields.
The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies.
Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology.
Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.