欧洲不同地区河流中商业化学品生物降解率的变化。

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2024-11-12 Epub Date: 2024-10-28 DOI:10.1021/acs.est.4c07410
Run Tian, Malte Posselt, Kathrin Fenner, Michael S McLachlan
{"title":"欧洲不同地区河流中商业化学品生物降解率的变化。","authors":"Run Tian, Malte Posselt, Kathrin Fenner, Michael S McLachlan","doi":"10.1021/acs.est.4c07410","DOIUrl":null,"url":null,"abstract":"<p><p>Biodegradation is one of the most important processes influencing the fate of organic contaminants in the environment. Quantitative understanding of the spatial variability in environmental biodegradation is still largely uncharted territory. Here, we conducted modified OECD 309 tests to determine first-order biodegradation rate constants for 97 compounds in 18 freshwater river segments in five European countries: Sweden, Germany, Switzerland, Spain, and Greece. All but two of the compounds showed significant spatial variability in rate constants across European rivers (ANOVA, <i>P</i> < 0.05). The median standard deviation of the biodegradation rate constant between rivers was a factor of 3. The spatial variability was similar between pristine and contaminated river segments. The longitude, total organic carbon, and clay content of sediment were the three most significant explanatory variables for the spatial variability (redundancy analysis, <i>P</i> < 0.05). Similarities in the spatial pattern of biodegradation rates were observed for some groups of compounds sharing a given functional group. The pronounced spatial variability presents challenges for the use of biodegradation simulation tests to assess chemical persistence. To reflect the variability in the biodegradation rate, the modified OECD 309 test would have to be repeated with water and sediment from multiple sites.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":"20201-20210"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562712/pdf/","citationCount":"0","resultStr":"{\"title\":\"Variability of Biodegradation Rates of Commercial Chemicals in Rivers in Different Regions of Europe.\",\"authors\":\"Run Tian, Malte Posselt, Kathrin Fenner, Michael S McLachlan\",\"doi\":\"10.1021/acs.est.4c07410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biodegradation is one of the most important processes influencing the fate of organic contaminants in the environment. Quantitative understanding of the spatial variability in environmental biodegradation is still largely uncharted territory. Here, we conducted modified OECD 309 tests to determine first-order biodegradation rate constants for 97 compounds in 18 freshwater river segments in five European countries: Sweden, Germany, Switzerland, Spain, and Greece. All but two of the compounds showed significant spatial variability in rate constants across European rivers (ANOVA, <i>P</i> < 0.05). The median standard deviation of the biodegradation rate constant between rivers was a factor of 3. The spatial variability was similar between pristine and contaminated river segments. The longitude, total organic carbon, and clay content of sediment were the three most significant explanatory variables for the spatial variability (redundancy analysis, <i>P</i> < 0.05). Similarities in the spatial pattern of biodegradation rates were observed for some groups of compounds sharing a given functional group. The pronounced spatial variability presents challenges for the use of biodegradation simulation tests to assess chemical persistence. To reflect the variability in the biodegradation rate, the modified OECD 309 test would have to be repeated with water and sediment from multiple sites.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\" \",\"pages\":\"20201-20210\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562712/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c07410\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c07410","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

生物降解是影响环境中有机污染物归宿的最重要过程之一。定量了解环境生物降解的空间变异性在很大程度上仍是一个未知领域。在此,我们进行了修改后的 OECD 309 试验,以确定欧洲五国 18 个淡水河段中 97 种化合物的一阶生物降解速率常数:瑞典、德国、瑞士、西班牙和希腊。除两种化合物外,其他所有化合物的降解速率常数在欧洲河流中都存在显著的空间差异(方差分析,P < 0.05)。河流间生物降解速率常数的中位标准偏差为 3 倍,原始河段和受污染河段的空间变异性相似。经度、总有机碳和沉积物的粘土含量是对空间变异性最有意义的三个解释变量(冗余分析,P < 0.05)。在生物降解率的空间模式中,一些同属一个功能群的化合物组具有相似性。明显的空间变异性给使用生物降解模拟试验评估化学品持久性带来了挑战。为了反映生物降解速率的变化,必须用多个地点的水和沉积物重复经修改的 OECD 309 试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variability of Biodegradation Rates of Commercial Chemicals in Rivers in Different Regions of Europe.

Biodegradation is one of the most important processes influencing the fate of organic contaminants in the environment. Quantitative understanding of the spatial variability in environmental biodegradation is still largely uncharted territory. Here, we conducted modified OECD 309 tests to determine first-order biodegradation rate constants for 97 compounds in 18 freshwater river segments in five European countries: Sweden, Germany, Switzerland, Spain, and Greece. All but two of the compounds showed significant spatial variability in rate constants across European rivers (ANOVA, P < 0.05). The median standard deviation of the biodegradation rate constant between rivers was a factor of 3. The spatial variability was similar between pristine and contaminated river segments. The longitude, total organic carbon, and clay content of sediment were the three most significant explanatory variables for the spatial variability (redundancy analysis, P < 0.05). Similarities in the spatial pattern of biodegradation rates were observed for some groups of compounds sharing a given functional group. The pronounced spatial variability presents challenges for the use of biodegradation simulation tests to assess chemical persistence. To reflect the variability in the biodegradation rate, the modified OECD 309 test would have to be repeated with water and sediment from multiple sites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Enhanced Nonagricultural Emissions of Ammonia Influence Aerosol Ammonium in an Urban Atmosphere: Evidence from Kinetic Versus Equilibrium Isotope Fractionation Controls on Nitrogen UV-Aged Nanoplastics Increase Mercury Toxicity in a Marine Copepod under Multigenerational Exposure: A Carrier Role Identification of Novel Iodinated Polyfluoroalkyl Ether Acids and Other Emerging PFAS in Soils Using a Nontargeted Molecular Network Approach Effect of Reaction Interface Structure on the Morphology and Performance of Thin-Film Composite Membrane Molecular Mechanisms of Humic Acid in Inhibiting Silica Scaling during Membrane Distillation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1