Fernando A Del Castillo, Nyssa T Emerson, Haw Yang
{"title":"评估基于 COMSOL 的有限元方法在模拟等离子体改性荧光方面的准确性。","authors":"Fernando A Del Castillo, Nyssa T Emerson, Haw Yang","doi":"10.1021/acs.jpcb.4c04008","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately modeling plasmon-modified fluorescence is important for understanding and guiding the design of experimental nanostructures that reliably enhance fluorescence. They are of particular interest due to their potential to allow localized \"hot spots\" of high fluorescence enhancement in a reproducible manner. Given the increasingly prevalent use of the COMSOL Multiphysics software package for simulating these phenomena, we investigate its accuracy using an analytically tractable model consisting of a gold nanosphere interacting with either a plane wave or a radiating point dipole. COMSOL simulation results were compared with a formally exact analytical theory. It was found that simulation parameters commonly used for plane-wave scattering do not necessarily produce accurate results for the nanoparticle-plasmon-coupled dipole emission case. Instead, user-input adaptive meshing parameters were found to be helpful in achieving quantitative agreements between COMSOL and analytical theory results for plasmon-modified fluorescence. Our studies suggest convergence to analytically calculated values when a minimum of two additional user-input mesh elements separate the point-dipole position and the nanoparticle surface. This practical insight is expected to aid in the application of COMSOL simulations to planning and interpreting fluorescence modification experiments.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"10789-10798"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the Accuracy of the COMSOL-Based Finite-Element Method for Simulating Plasmon-Modified Fluorescence.\",\"authors\":\"Fernando A Del Castillo, Nyssa T Emerson, Haw Yang\",\"doi\":\"10.1021/acs.jpcb.4c04008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurately modeling plasmon-modified fluorescence is important for understanding and guiding the design of experimental nanostructures that reliably enhance fluorescence. They are of particular interest due to their potential to allow localized \\\"hot spots\\\" of high fluorescence enhancement in a reproducible manner. Given the increasingly prevalent use of the COMSOL Multiphysics software package for simulating these phenomena, we investigate its accuracy using an analytically tractable model consisting of a gold nanosphere interacting with either a plane wave or a radiating point dipole. COMSOL simulation results were compared with a formally exact analytical theory. It was found that simulation parameters commonly used for plane-wave scattering do not necessarily produce accurate results for the nanoparticle-plasmon-coupled dipole emission case. Instead, user-input adaptive meshing parameters were found to be helpful in achieving quantitative agreements between COMSOL and analytical theory results for plasmon-modified fluorescence. Our studies suggest convergence to analytically calculated values when a minimum of two additional user-input mesh elements separate the point-dipole position and the nanoparticle surface. This practical insight is expected to aid in the application of COMSOL simulations to planning and interpreting fluorescence modification experiments.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"10789-10798\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.4c04008\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c04008","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Evaluating the Accuracy of the COMSOL-Based Finite-Element Method for Simulating Plasmon-Modified Fluorescence.
Accurately modeling plasmon-modified fluorescence is important for understanding and guiding the design of experimental nanostructures that reliably enhance fluorescence. They are of particular interest due to their potential to allow localized "hot spots" of high fluorescence enhancement in a reproducible manner. Given the increasingly prevalent use of the COMSOL Multiphysics software package for simulating these phenomena, we investigate its accuracy using an analytically tractable model consisting of a gold nanosphere interacting with either a plane wave or a radiating point dipole. COMSOL simulation results were compared with a formally exact analytical theory. It was found that simulation parameters commonly used for plane-wave scattering do not necessarily produce accurate results for the nanoparticle-plasmon-coupled dipole emission case. Instead, user-input adaptive meshing parameters were found to be helpful in achieving quantitative agreements between COMSOL and analytical theory results for plasmon-modified fluorescence. Our studies suggest convergence to analytically calculated values when a minimum of two additional user-input mesh elements separate the point-dipole position and the nanoparticle surface. This practical insight is expected to aid in the application of COMSOL simulations to planning and interpreting fluorescence modification experiments.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.