Yan Zhang, Qirui Xu, Yong Liu, Ying Liu, Jie Luo, Jia Liu, Siyu Yu
{"title":"西藏萝卜多糖能改善免疫抑制小鼠的免疫功能并调节肠道微生物群。","authors":"Yan Zhang, Qirui Xu, Yong Liu, Ying Liu, Jie Luo, Jia Liu, Siyu Yu","doi":"10.1111/1750-3841.17419","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, active polysaccharides were extracted from Brassica rapa L. polysaccharide (BRP), and structural characterization was preliminarily investigated. Its immunomodulatory activity and molecular biological mechanisms in cyclophosphamide-induced immunosuppressed mice were also explored, as well as its effects on intestinal microbiota. Results indicate that BRP is an acidic heteropolysaccharide with the main components of Ara, GalA, and GlcA and has α- and β-glycosidic linkages with pyranose bonds. The results of the study showed that BRP could effectively improve the thymus and spleen indices and repair Cy-induced immune tissue damage in immunosuppressed mice. Meanwhile, BRP increased the immune cell activity and antioxidant levels in mice. In addition, BRP increased the secretion of cytokines (IL-1β, IL-6, IL-10, and TNF-α) and immunoglobulins (IgA, IgG) in mouse serum. It also regulates the relative expression of genes related to the TLR4/NF-κB signaling pathways as well as regulates the diversity and composition of mouse intestinal microbiota. In conclusion, BRP was able to regulated the immune function in immunosuppressed mice, providing a theoretical basis for the development of immunomodulators.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brassica rapa L. (Tibetan Turnip) polysaccharide improves the immune function and regulates intestinal microbiota in immunosuppressive mice.\",\"authors\":\"Yan Zhang, Qirui Xu, Yong Liu, Ying Liu, Jie Luo, Jia Liu, Siyu Yu\",\"doi\":\"10.1111/1750-3841.17419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, active polysaccharides were extracted from Brassica rapa L. polysaccharide (BRP), and structural characterization was preliminarily investigated. Its immunomodulatory activity and molecular biological mechanisms in cyclophosphamide-induced immunosuppressed mice were also explored, as well as its effects on intestinal microbiota. Results indicate that BRP is an acidic heteropolysaccharide with the main components of Ara, GalA, and GlcA and has α- and β-glycosidic linkages with pyranose bonds. The results of the study showed that BRP could effectively improve the thymus and spleen indices and repair Cy-induced immune tissue damage in immunosuppressed mice. Meanwhile, BRP increased the immune cell activity and antioxidant levels in mice. In addition, BRP increased the secretion of cytokines (IL-1β, IL-6, IL-10, and TNF-α) and immunoglobulins (IgA, IgG) in mouse serum. It also regulates the relative expression of genes related to the TLR4/NF-κB signaling pathways as well as regulates the diversity and composition of mouse intestinal microbiota. In conclusion, BRP was able to regulated the immune function in immunosuppressed mice, providing a theoretical basis for the development of immunomodulators.</p>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1750-3841.17419\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1750-3841.17419","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Brassica rapa L. (Tibetan Turnip) polysaccharide improves the immune function and regulates intestinal microbiota in immunosuppressive mice.
In this paper, active polysaccharides were extracted from Brassica rapa L. polysaccharide (BRP), and structural characterization was preliminarily investigated. Its immunomodulatory activity and molecular biological mechanisms in cyclophosphamide-induced immunosuppressed mice were also explored, as well as its effects on intestinal microbiota. Results indicate that BRP is an acidic heteropolysaccharide with the main components of Ara, GalA, and GlcA and has α- and β-glycosidic linkages with pyranose bonds. The results of the study showed that BRP could effectively improve the thymus and spleen indices and repair Cy-induced immune tissue damage in immunosuppressed mice. Meanwhile, BRP increased the immune cell activity and antioxidant levels in mice. In addition, BRP increased the secretion of cytokines (IL-1β, IL-6, IL-10, and TNF-α) and immunoglobulins (IgA, IgG) in mouse serum. It also regulates the relative expression of genes related to the TLR4/NF-κB signaling pathways as well as regulates the diversity and composition of mouse intestinal microbiota. In conclusion, BRP was able to regulated the immune function in immunosuppressed mice, providing a theoretical basis for the development of immunomodulators.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.