缺钾条件下玉米根系发育需要 DLR1/NHX7

IF 6 1区 生物学 Q1 PLANT SCIENCES Plant, Cell & Environment Pub Date : 2025-02-01 Epub Date: 2024-10-23 DOI:10.1111/pce.15246
Kang Guo, Daojun Li, Yan Li, Xiaoqing Wang, Chunfei Wang, Yanbin Zhu, Chengyun Wu, Zhubing Hu
{"title":"缺钾条件下玉米根系发育需要 DLR1/NHX7","authors":"Kang Guo, Daojun Li, Yan Li, Xiaoqing Wang, Chunfei Wang, Yanbin Zhu, Chengyun Wu, Zhubing Hu","doi":"10.1111/pce.15246","DOIUrl":null,"url":null,"abstract":"<p><p>Root System Architecture (RSA) is a crucial plant trait that governs a plant's ability to absorb water and nutrients. In this study, we describe a mutant with nutrient-dependent defects in root development, affecting both the primary root and lateral roots (LRs). This mutant, identified through a screen for defects in LR development, has been designated dlr1-1. The dlr1-1 mutant exhibits impaired LR emergence rather than defects in the LR primordium (LRP) formation, particularly under potassium (K<sup>+</sup>)-deprivation conditions. This impairment likely stems from inhibited cell proliferation caused by the dlr1-1 mutation. K<sup>+</sup> deprivation specifically leads to the accumulation of salicylic acid (SA) in the dlr1-1 mutant, consistent with the upregulation of SA biosynthesis genes. Moreover, exogenous application of SA to wild-type plants (B73) mimics the dlr1-1 phenotype. Conversely, treatment of the dlr1-1 mutant with 2-aminoindane-2-phosphonic acid, an SA biosynthesis inhibitor, partially restores LR emergence, indicating that elevated SA levels may be responsible for the mutant's developmental defects. MutMap analysis and allelism tests confirmed that the phenotypes of the dlr1-1 mutant results from the loss of the Na<sup>+</sup>/H<sup>+</sup> antiporter, ZmNHX7. Additionally, the application of NaCl exacerbates the dlr1-1 mutant phenotype, suggesting that the root defects in dlr1-1 mutant depend on ion homoeostasis. In conclusion, our findings demonstrate that maize DLR1/NHX7 is essential for root development under potassium deprivation.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":"1329-1343"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maize DLR1/NHX7 Is Required for Root Development Under Potassium Deficiency.\",\"authors\":\"Kang Guo, Daojun Li, Yan Li, Xiaoqing Wang, Chunfei Wang, Yanbin Zhu, Chengyun Wu, Zhubing Hu\",\"doi\":\"10.1111/pce.15246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Root System Architecture (RSA) is a crucial plant trait that governs a plant's ability to absorb water and nutrients. In this study, we describe a mutant with nutrient-dependent defects in root development, affecting both the primary root and lateral roots (LRs). This mutant, identified through a screen for defects in LR development, has been designated dlr1-1. The dlr1-1 mutant exhibits impaired LR emergence rather than defects in the LR primordium (LRP) formation, particularly under potassium (K<sup>+</sup>)-deprivation conditions. This impairment likely stems from inhibited cell proliferation caused by the dlr1-1 mutation. K<sup>+</sup> deprivation specifically leads to the accumulation of salicylic acid (SA) in the dlr1-1 mutant, consistent with the upregulation of SA biosynthesis genes. Moreover, exogenous application of SA to wild-type plants (B73) mimics the dlr1-1 phenotype. Conversely, treatment of the dlr1-1 mutant with 2-aminoindane-2-phosphonic acid, an SA biosynthesis inhibitor, partially restores LR emergence, indicating that elevated SA levels may be responsible for the mutant's developmental defects. MutMap analysis and allelism tests confirmed that the phenotypes of the dlr1-1 mutant results from the loss of the Na<sup>+</sup>/H<sup>+</sup> antiporter, ZmNHX7. Additionally, the application of NaCl exacerbates the dlr1-1 mutant phenotype, suggesting that the root defects in dlr1-1 mutant depend on ion homoeostasis. In conclusion, our findings demonstrate that maize DLR1/NHX7 is essential for root development under potassium deprivation.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"1329-1343\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.15246\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15246","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

根系结构(RSA)是植物的一个重要性状,它决定了植物吸收水分和养分的能力。在这项研究中,我们描述了一种根系发育存在营养依赖性缺陷的突变体,它同时影响主根和侧根(LRs)。这种突变体是通过筛选 LR 发育缺陷而发现的,被命名为 dlr1-1。dlr1-1 突变体表现出 LR 出现障碍,而不是 LR 初级体(LRP)形成缺陷,尤其是在钾(K+)剥夺条件下。这种缺陷可能源于 dlr1-1 突变导致的细胞增殖抑制。钾(K+)剥夺会导致水杨酸(SA)在 dlr1-1 突变体中积累,这与 SA 生物合成基因的上调是一致的。此外,向野生型植株(B73)施用外源 SA 能模拟 dlr1-1 的表型。相反,用 2- 氨基茚满-2-膦酸(一种 SA 生物合成抑制剂)处理 dlr1-1 突变体,可部分恢复 LR 的萌发,这表明 SA 水平的升高可能是造成突变体发育缺陷的原因。MutMap 分析和等位基因测试证实,dlr1-1 突变体的表型是由于 Na+/H+ 反转运体 ZmNHX7 的缺失造成的。此外,施加 NaCl 会加剧 dlr1-1 突变体的表型,这表明 dlr1-1 突变体的根缺陷取决于离子平衡。总之,我们的研究结果表明,玉米 DLR1/NHX7 在钾匮乏条件下对根的发育至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maize DLR1/NHX7 Is Required for Root Development Under Potassium Deficiency.

Root System Architecture (RSA) is a crucial plant trait that governs a plant's ability to absorb water and nutrients. In this study, we describe a mutant with nutrient-dependent defects in root development, affecting both the primary root and lateral roots (LRs). This mutant, identified through a screen for defects in LR development, has been designated dlr1-1. The dlr1-1 mutant exhibits impaired LR emergence rather than defects in the LR primordium (LRP) formation, particularly under potassium (K+)-deprivation conditions. This impairment likely stems from inhibited cell proliferation caused by the dlr1-1 mutation. K+ deprivation specifically leads to the accumulation of salicylic acid (SA) in the dlr1-1 mutant, consistent with the upregulation of SA biosynthesis genes. Moreover, exogenous application of SA to wild-type plants (B73) mimics the dlr1-1 phenotype. Conversely, treatment of the dlr1-1 mutant with 2-aminoindane-2-phosphonic acid, an SA biosynthesis inhibitor, partially restores LR emergence, indicating that elevated SA levels may be responsible for the mutant's developmental defects. MutMap analysis and allelism tests confirmed that the phenotypes of the dlr1-1 mutant results from the loss of the Na+/H+ antiporter, ZmNHX7. Additionally, the application of NaCl exacerbates the dlr1-1 mutant phenotype, suggesting that the root defects in dlr1-1 mutant depend on ion homoeostasis. In conclusion, our findings demonstrate that maize DLR1/NHX7 is essential for root development under potassium deprivation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
期刊最新文献
Heat Stress Inhibits Pollen Development by Degrading mRNA Capping Enzyme ARCP1 and ARCP2. Multi-Omics Analysis Reveals Molecular Responses of Alkaloid Content Variations in Lycoris aurea Across Different Locations. Direct and Legacy Effects of Varying Cool-Season Precipitation Totals on Ecosystem Carbon Flux in a Semi-Arid Mixed Grassland. Growth, Morphology and Respiratory Cost Responses to Salinity in the Mangrove Plant Rhizophora Stylosa Depend on Growth Temperature. Productive Poplar Genotypes Exhibited Temporally Stable Low Stem Embolism Resistance and Hydraulic Resistance Segmentation at the Stem-Leaf Transition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1