Jie Dong, Jinrong Hou, Qiang Yao, Baoxiang Wang, Jingyi Wang, Xuan Shen, Ke Lai, Haitao Ge, Yingchun Wang, Min Xu, Aigen Fu, Fei Wang
{"title":"类木质磷酸酶 TEF8 参与了衣藻的状态转换和强光胁迫抗性。","authors":"Jie Dong, Jinrong Hou, Qiang Yao, Baoxiang Wang, Jingyi Wang, Xuan Shen, Ke Lai, Haitao Ge, Yingchun Wang, Min Xu, Aigen Fu, Fei Wang","doi":"10.1111/tpj.17108","DOIUrl":null,"url":null,"abstract":"<p><p>The sophisticated regulation of state transition is required to maintain optimal photosynthetic performance under fluctuating light condition, through balancing the absorbed light energy between photosystem II and photosystem I. This exquisite process incorporates phosphorylation and dephosphorylation of light-harvesting complexes and PSII core subunits, accomplished by thylakoid membrane-localized kinases and phosphatases that have not been fully identified. In this study, one Chlamydomonas high light response gene, THYLAKOID ENRICHED FRACTION 8 (TEF8), was characterized. The Chlamydomonas tef8 mutant showed high light sensitivity and defective state transition. The enzymatic activity assays showed that TEF8 is a bona fide phosphatase localized in thylakoid membranes. Biochemical assays, including BN-PAGE, pull-down, and phosphopeptide mass spectrometry, proved that TEF8 associates with photosystem II and is involved in the dephosphorylation of D2 and CP29 subunits during state 2 to state 1 transition. Taken together, our results identified TEF8 as a thylakoid phosphatase with multiple dephosphorylation targets on photosystem II, and provide new insight into the regulatory mechanism of state transition and high light resistance in Chlamydomonas.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The thylakoid phosphatase TEF8 is involved in state transition and high light stress resistance in Chlamydomonas.\",\"authors\":\"Jie Dong, Jinrong Hou, Qiang Yao, Baoxiang Wang, Jingyi Wang, Xuan Shen, Ke Lai, Haitao Ge, Yingchun Wang, Min Xu, Aigen Fu, Fei Wang\",\"doi\":\"10.1111/tpj.17108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sophisticated regulation of state transition is required to maintain optimal photosynthetic performance under fluctuating light condition, through balancing the absorbed light energy between photosystem II and photosystem I. This exquisite process incorporates phosphorylation and dephosphorylation of light-harvesting complexes and PSII core subunits, accomplished by thylakoid membrane-localized kinases and phosphatases that have not been fully identified. In this study, one Chlamydomonas high light response gene, THYLAKOID ENRICHED FRACTION 8 (TEF8), was characterized. The Chlamydomonas tef8 mutant showed high light sensitivity and defective state transition. The enzymatic activity assays showed that TEF8 is a bona fide phosphatase localized in thylakoid membranes. Biochemical assays, including BN-PAGE, pull-down, and phosphopeptide mass spectrometry, proved that TEF8 associates with photosystem II and is involved in the dephosphorylation of D2 and CP29 subunits during state 2 to state 1 transition. Taken together, our results identified TEF8 as a thylakoid phosphatase with multiple dephosphorylation targets on photosystem II, and provide new insight into the regulatory mechanism of state transition and high light resistance in Chlamydomonas.</p>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/tpj.17108\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/tpj.17108","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
在波动的光照条件下,需要通过平衡光系统 II 和光系统 I 之间吸收的光能来维持光合作用的最佳性能。这一复杂的过程包括光收集复合物和 PSII 核心亚基的磷酸化和去磷酸化,由尚未完全确定的位于类木质膜的激酶和磷酸酶完成。本研究对衣藻的一个强光响应基因--THYLAKOID ENRICHED FRACTION 8(TEF8)进行了鉴定。衣藻 tef8 突变体表现出高光敏性和状态转换缺陷。酶活性测定表明,TEF8 是一种真正的磷酸酶,定位于类囊体膜。BN-PAGE、拉取和磷酸肽质谱等生化实验证明,TEF8与光系统II有关联,并在状态2向状态1的转换过程中参与了D2和CP29亚基的去磷酸化。综上所述,我们的研究结果确定了TEF8是一种在光系统II上具有多个去磷酸化靶点的类木质磷酸酶,并为了解衣藻的状态转换和强光抗性的调控机制提供了新的视角。
The thylakoid phosphatase TEF8 is involved in state transition and high light stress resistance in Chlamydomonas.
The sophisticated regulation of state transition is required to maintain optimal photosynthetic performance under fluctuating light condition, through balancing the absorbed light energy between photosystem II and photosystem I. This exquisite process incorporates phosphorylation and dephosphorylation of light-harvesting complexes and PSII core subunits, accomplished by thylakoid membrane-localized kinases and phosphatases that have not been fully identified. In this study, one Chlamydomonas high light response gene, THYLAKOID ENRICHED FRACTION 8 (TEF8), was characterized. The Chlamydomonas tef8 mutant showed high light sensitivity and defective state transition. The enzymatic activity assays showed that TEF8 is a bona fide phosphatase localized in thylakoid membranes. Biochemical assays, including BN-PAGE, pull-down, and phosphopeptide mass spectrometry, proved that TEF8 associates with photosystem II and is involved in the dephosphorylation of D2 and CP29 subunits during state 2 to state 1 transition. Taken together, our results identified TEF8 as a thylakoid phosphatase with multiple dephosphorylation targets on photosystem II, and provide new insight into the regulatory mechanism of state transition and high light resistance in Chlamydomonas.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.