在三维打印中集成微薄水凝胶涂层,用于生物活性小分子的时空传输。

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biofabrication Pub Date : 2024-11-11 DOI:10.1088/1758-5090/ad89fe
Md Sarker, Soomin Park, Vivek Kumar, Chang H Lee
{"title":"在三维打印中集成微薄水凝胶涂层,用于生物活性小分子的时空传输。","authors":"Md Sarker, Soomin Park, Vivek Kumar, Chang H Lee","doi":"10.1088/1758-5090/ad89fe","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) printing incorporated with controlled delivery is an effective tool for complex tissue regeneration. Here, we explored a new strategy for spatiotemporal delivery of bioactive cues by establishing a precise-controlled micro-thin coating of hydrogel carriers on 3D-printed scaffolds. We optimized the printing parameters for three hydrogel carriers, fibrin cross-linked with genipin, methacrylate hyaluronic acid, and multidomain peptides, resulting in homogenous micro-coating on desired locations in 3D printed polycaprolactone microfibers at each layer. Using the optimized multi-head printing technique, we successfully established spatial-controlled micro-thin coating of hydrogel layers containing profibrogenic small molecules (SMs), Oxotremorine M and PPBP maleate, and a chondrogenic cue, Kartogenin. The delivered SMs showed sustained releases up to 28 d and guided regional differentiation of mesenchymal stem cells, thus leading to fibrous and cartilaginous tissue matrix formation at designated scaffold regions<i>in vitro</i>and<i>in vivo</i>. Our micro-coating of hydrogel carriers may serve as an efficient approach to achieve spatiotemporal delivery of various bioactive cues through 3D printed scaffolds for engineering complex tissues.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552100/pdf/","citationCount":"0","resultStr":"{\"title\":\"Micro-thin hydrogel coating integrated in 3D printing for spatiotemporal delivery of bioactive small molecules.\",\"authors\":\"Md Sarker, Soomin Park, Vivek Kumar, Chang H Lee\",\"doi\":\"10.1088/1758-5090/ad89fe\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional (3D) printing incorporated with controlled delivery is an effective tool for complex tissue regeneration. Here, we explored a new strategy for spatiotemporal delivery of bioactive cues by establishing a precise-controlled micro-thin coating of hydrogel carriers on 3D-printed scaffolds. We optimized the printing parameters for three hydrogel carriers, fibrin cross-linked with genipin, methacrylate hyaluronic acid, and multidomain peptides, resulting in homogenous micro-coating on desired locations in 3D printed polycaprolactone microfibers at each layer. Using the optimized multi-head printing technique, we successfully established spatial-controlled micro-thin coating of hydrogel layers containing profibrogenic small molecules (SMs), Oxotremorine M and PPBP maleate, and a chondrogenic cue, Kartogenin. The delivered SMs showed sustained releases up to 28 d and guided regional differentiation of mesenchymal stem cells, thus leading to fibrous and cartilaginous tissue matrix formation at designated scaffold regions<i>in vitro</i>and<i>in vivo</i>. Our micro-coating of hydrogel carriers may serve as an efficient approach to achieve spatiotemporal delivery of various bioactive cues through 3D printed scaffolds for engineering complex tissues.</p>\",\"PeriodicalId\":8964,\"journal\":{\"name\":\"Biofabrication\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552100/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofabrication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1758-5090/ad89fe\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad89fe","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

三维(3D)打印结合可控递送是复杂组织再生的有效工具。在这里,我们通过在三维打印支架上精确控制水凝胶载体的微薄涂层,探索了一种生物活性线索时空递送的新策略。我们优化了三种水凝胶载体(与基因素交联的纤维蛋白(FibGen)、甲基丙烯酸透明质酸(HAMA)和多肽(MDP))的打印参数,从而在三维打印 PCL 微纤维的每层所需位置上实现了均匀的微涂层。利用优化的多头打印技术,我们成功地在含有促生长小分子 Oxo-M 和 4-PPBP 以及软骨生成线索 Kartogenin (KGN) 的水凝胶层上建立了空间可控的微薄涂层。输送的小分子可持续释放 28 天,并引导间充质干细胞(MSCs)的区域分化,从而在体外和体内指定的支架区域形成纤维和软骨组织基质。我们的水凝胶载体微涂层可以作为一种有效的方法,通过三维打印支架实现各种生物活性线索的时空传递,从而实现复杂组织的工程化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Micro-thin hydrogel coating integrated in 3D printing for spatiotemporal delivery of bioactive small molecules.

Three-dimensional (3D) printing incorporated with controlled delivery is an effective tool for complex tissue regeneration. Here, we explored a new strategy for spatiotemporal delivery of bioactive cues by establishing a precise-controlled micro-thin coating of hydrogel carriers on 3D-printed scaffolds. We optimized the printing parameters for three hydrogel carriers, fibrin cross-linked with genipin, methacrylate hyaluronic acid, and multidomain peptides, resulting in homogenous micro-coating on desired locations in 3D printed polycaprolactone microfibers at each layer. Using the optimized multi-head printing technique, we successfully established spatial-controlled micro-thin coating of hydrogel layers containing profibrogenic small molecules (SMs), Oxotremorine M and PPBP maleate, and a chondrogenic cue, Kartogenin. The delivered SMs showed sustained releases up to 28 d and guided regional differentiation of mesenchymal stem cells, thus leading to fibrous and cartilaginous tissue matrix formation at designated scaffold regionsin vitroandin vivo. Our micro-coating of hydrogel carriers may serve as an efficient approach to achieve spatiotemporal delivery of various bioactive cues through 3D printed scaffolds for engineering complex tissues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
期刊最新文献
Automated production of nerve repair constructs containing endothelial cell tube-like structures. Fabrication of endothelialized capillary-like microchannel networks using sacrificial thermoresponsive microfibers. Bioprinting a resilient and transparent cornea stroma equivalent: harnessing dual crosslinking strategy with decellularized cornea matrix and silk fibroin hybrid. Narrative review of proximal tubular epithelial cellin-vitroco-culture models. Novel in situ and rapid self-gelation recombinant collagen-like protein hydrogel for wound regeneration: mediated by metal coordination crosslinking and reinforced by electro-oxidized tea polyphenols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1