{"title":"利用深度自动编码器进行异常检测,预测 SARS-CoV-2 株系的优势。","authors":"Simone Rancati, Giovanna Nicora, Mattia Prosperi, Riccardo Bellazzi, Marco Salemi, Simone Marini","doi":"10.1093/bib/bbae535","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic is marked by the successive emergence of new SARS-CoV-2 variants, lineages, and sublineages that outcompete earlier strains, largely due to factors like increased transmissibility and immune escape. We propose DeepAutoCoV, an unsupervised deep learning anomaly detection system, to predict future dominant lineages (FDLs). We define FDLs as viral (sub)lineages that will constitute >10% of all the viral sequences added to the GISAID, a public database supporting viral genetic sequence sharing, in a given week. DeepAutoCoV is trained and validated by assembling global and country-specific data sets from over 16 million Spike protein sequences sampled over a period of ~4 years. DeepAutoCoV successfully flags FDLs at very low frequencies (0.01%-3%), with median lead times of 4-17 weeks, and predicts FDLs between ~5 and ~25 times better than a baseline approach. For example, the B.1.617.2 vaccine reference strain was flagged as FDL when its frequency was only 0.01%, more than a year before it was considered for an updated COVID-19 vaccine. Furthermore, DeepAutoCoV outputs interpretable results by pinpointing specific mutations potentially linked to increased fitness and may provide significant insights for the optimization of public health 'pre-emptive' intervention strategies.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500442/pdf/","citationCount":"0","resultStr":"{\"title\":\"Forecasting dominance of SARS-CoV-2 lineages by anomaly detection using deep AutoEncoders.\",\"authors\":\"Simone Rancati, Giovanna Nicora, Mattia Prosperi, Riccardo Bellazzi, Marco Salemi, Simone Marini\",\"doi\":\"10.1093/bib/bbae535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The COVID-19 pandemic is marked by the successive emergence of new SARS-CoV-2 variants, lineages, and sublineages that outcompete earlier strains, largely due to factors like increased transmissibility and immune escape. We propose DeepAutoCoV, an unsupervised deep learning anomaly detection system, to predict future dominant lineages (FDLs). We define FDLs as viral (sub)lineages that will constitute >10% of all the viral sequences added to the GISAID, a public database supporting viral genetic sequence sharing, in a given week. DeepAutoCoV is trained and validated by assembling global and country-specific data sets from over 16 million Spike protein sequences sampled over a period of ~4 years. DeepAutoCoV successfully flags FDLs at very low frequencies (0.01%-3%), with median lead times of 4-17 weeks, and predicts FDLs between ~5 and ~25 times better than a baseline approach. For example, the B.1.617.2 vaccine reference strain was flagged as FDL when its frequency was only 0.01%, more than a year before it was considered for an updated COVID-19 vaccine. Furthermore, DeepAutoCoV outputs interpretable results by pinpointing specific mutations potentially linked to increased fitness and may provide significant insights for the optimization of public health 'pre-emptive' intervention strategies.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"25 6\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500442/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae535\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae535","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Forecasting dominance of SARS-CoV-2 lineages by anomaly detection using deep AutoEncoders.
The COVID-19 pandemic is marked by the successive emergence of new SARS-CoV-2 variants, lineages, and sublineages that outcompete earlier strains, largely due to factors like increased transmissibility and immune escape. We propose DeepAutoCoV, an unsupervised deep learning anomaly detection system, to predict future dominant lineages (FDLs). We define FDLs as viral (sub)lineages that will constitute >10% of all the viral sequences added to the GISAID, a public database supporting viral genetic sequence sharing, in a given week. DeepAutoCoV is trained and validated by assembling global and country-specific data sets from over 16 million Spike protein sequences sampled over a period of ~4 years. DeepAutoCoV successfully flags FDLs at very low frequencies (0.01%-3%), with median lead times of 4-17 weeks, and predicts FDLs between ~5 and ~25 times better than a baseline approach. For example, the B.1.617.2 vaccine reference strain was flagged as FDL when its frequency was only 0.01%, more than a year before it was considered for an updated COVID-19 vaccine. Furthermore, DeepAutoCoV outputs interpretable results by pinpointing specific mutations potentially linked to increased fitness and may provide significant insights for the optimization of public health 'pre-emptive' intervention strategies.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.