Catharina Kost, Ute Scheffer, Elisabeth Kalden, Michael Wilhelm Göbel
{"title":"四氨基萘酚对 pUC19 DNA 的高效裂解。","authors":"Catharina Kost, Ute Scheffer, Elisabeth Kalden, Michael Wilhelm Göbel","doi":"10.1002/open.202400157","DOIUrl":null,"url":null,"abstract":"<p><p>In an attempt to create models of phosphodiesterases, we previously investigated bis(guanidinium) naphthols. Such metal-free anion receptors cleaved aryl phosphates and also plasmid DNA. Observed reaction rates, however, could not compete with those of highly reactive metal complexes. In the present study, we have replaced the guanidines by ethylene diamine side chains which accelerates the plasmid cleavage by compound 13 significantly (1 mM 13: t1/2=22 h). Further gains in reactivity are achieved by azo coupling of the naphthol unit. The electron accepting azo group decreases the pK<sub>a</sub> of the hydroxy group. It can also serve as a dye label and a handle for attaching DNA binding moieties. The resulting azo naphthol 17 not only nicks (1 mM 17: t1/2~1 h) but also linearizes pUC19 DNA. Although the high reactivity of 17 seems to result in part from aggregation, in the presence of EDTA azo naphthol 17 obeys first order kinetics (1 mM 17: t1/2=4.8 h), reacts four times faster than naphthol 13 and surpasses by far the former bis(guanidinium) naphthols 4 and 5.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400157"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Cleavage of pUC19 DNA by Tetraaminonaphthols.\",\"authors\":\"Catharina Kost, Ute Scheffer, Elisabeth Kalden, Michael Wilhelm Göbel\",\"doi\":\"10.1002/open.202400157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In an attempt to create models of phosphodiesterases, we previously investigated bis(guanidinium) naphthols. Such metal-free anion receptors cleaved aryl phosphates and also plasmid DNA. Observed reaction rates, however, could not compete with those of highly reactive metal complexes. In the present study, we have replaced the guanidines by ethylene diamine side chains which accelerates the plasmid cleavage by compound 13 significantly (1 mM 13: t1/2=22 h). Further gains in reactivity are achieved by azo coupling of the naphthol unit. The electron accepting azo group decreases the pK<sub>a</sub> of the hydroxy group. It can also serve as a dye label and a handle for attaching DNA binding moieties. The resulting azo naphthol 17 not only nicks (1 mM 17: t1/2~1 h) but also linearizes pUC19 DNA. Although the high reactivity of 17 seems to result in part from aggregation, in the presence of EDTA azo naphthol 17 obeys first order kinetics (1 mM 17: t1/2=4.8 h), reacts four times faster than naphthol 13 and surpasses by far the former bis(guanidinium) naphthols 4 and 5.</p>\",\"PeriodicalId\":9831,\"journal\":{\"name\":\"ChemistryOpen\",\"volume\":\" \",\"pages\":\"e202400157\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistryOpen\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/open.202400157\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/open.202400157","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
为了建立磷酸二酯酶模型,我们以前研究过双(胍基)萘酚。这种不含金属的阴离子受体能裂解芳基磷酸酯和质粒 DNA。然而,观察到的反应速率无法与高活性金属复合物的反应速率相媲美。在本研究中,我们用乙二胺侧链取代了鸟苷酸,这大大加快了化合物 13 对质粒的裂解速度(1 mM 13:t1/2=22 h)。萘酚单元的偶氮偶联进一步提高了反应活性。接受电子的偶氮基降低了羟基的 pKa。它还可以作为染料标签和连接 DNA 结合分子的把手。由此产生的偶氮萘酚 17 不仅能使 pUC19 DNA 线性化(1 mM 17:t1/2~1 h)。虽然 17 的高反应性似乎部分是由于聚集造成的,但在 EDTA 存在的情况下,偶氮萘酚 17 遵循一阶动力学(1 mM 17:t1/2=4.8 h),反应速度是萘酚 13 的四倍,远远超过了以前的双(胍基)萘酚 4 和 5。
Efficient Cleavage of pUC19 DNA by Tetraaminonaphthols.
In an attempt to create models of phosphodiesterases, we previously investigated bis(guanidinium) naphthols. Such metal-free anion receptors cleaved aryl phosphates and also plasmid DNA. Observed reaction rates, however, could not compete with those of highly reactive metal complexes. In the present study, we have replaced the guanidines by ethylene diamine side chains which accelerates the plasmid cleavage by compound 13 significantly (1 mM 13: t1/2=22 h). Further gains in reactivity are achieved by azo coupling of the naphthol unit. The electron accepting azo group decreases the pKa of the hydroxy group. It can also serve as a dye label and a handle for attaching DNA binding moieties. The resulting azo naphthol 17 not only nicks (1 mM 17: t1/2~1 h) but also linearizes pUC19 DNA. Although the high reactivity of 17 seems to result in part from aggregation, in the presence of EDTA azo naphthol 17 obeys first order kinetics (1 mM 17: t1/2=4.8 h), reacts four times faster than naphthol 13 and surpasses by far the former bis(guanidinium) naphthols 4 and 5.
期刊介绍:
ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.